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Abstract

This paper presents a comparative analysis of advanced Al-based techniques for human face inpainting using se-
mantic masks. The primary objective of this research is to assess the effectiveness of image inpainting methods in
semantically restoring different facial elements. Our study demonstrates that image inpainting models experience
significant challenges in reconstructing complete facial components. Unlike random masks, which often reveal parts
of the main facial components (e.g., sections of the nose or mouth), semantic masks fully obscure them, potentially
posing a greater challenge for inpainting methods. We evaluate the performance of various methods, including gener-
ative adversarial networks (GANSs), transformers, and diffusion models, based on their ability to restore entire facial
components.

To address these challenges and to enhance inpainting performance, we conduct three retraining processes using
semantic masks, random masks, and a combination of both. This combined approach leverages the strengths of both
mask types, enhancing the model’s context-awareness and resulting in more realistic and accurate facial reconstruc-
tions.
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1. Introduction semantic masks that fully obscure key facial features,
such as eyes, mouth, and hair. Unlike random masks,

1.1. Motivation which may leave key facial components partially vis-

Image inpainting is a sophisticated process for recon-
structing missing or damaged areas of an image (1). It
also involves seamlessly removing unwanted elements
(such as snow (2) or shadows (3; 4)). It is essential in
fields such as photography, film production, and digital
art, where preserving the integrity of visual content is
critical. By enabling the restoration of images to their
original state or enhancing them for aesthetic appeal
(5; 6), image inpainting plays a vital role in applications
such as object removal and image restoration.

Recent advances in Al have significantly improved
inpainting techniques, surpassing traditional methods
that rely on local pixel information (7). The Al mod-
els offer greater accuracy and realism, particularly in
reconstructing human faces, which require high preci-
sion and structural integrity. This paper focuses on the
challenging task of reconstructing human faces using
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ible, semantic masks may demand more complex in-
painting solutions.

1.2. Literature Review

Traditional inpainting methods rely on information
from surrounding pixels but often fall short in captur-
ing complex features (7). Deep learning significantly
enhances inpainting algorithms by enabling more accu-
rate, detailed, and realistic reconstruction of missing re-
gions. Models integrating convolutional operations (8)
and attention mechanisms (9) effectively capture both
fine-grained textures and high-level semantic features,
thereby improving the accuracy of predictions in dam-
aged regions. The encoder-decoder Convolutional Neu-
ral Network (CNN) model (10) was trained to fill in the
missing parts of an image with structures and textures
that fit the existing image content. Generative Adver-
sarial Networks (GANSs) have further advanced inpaint-
ing by introducing adversarial training, which promotes
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more realistic and contextually accurate inpainted re-
sults (11).

Enhanced GAN architectures have been developed
to improve inpainting quality and flexibility in (12; 13;
14). LaMa (12) is a new network architecture that uses
Fourier convolutions with an image-wide receptive field
and thus supports a large training mask. In (13), a GAN
with gated convolution was trained to perform inpaint-
ing using free-form masks, which can be either freely
drawn by a user or generated automatically. This flex-
ibility facilitates more natural and context-aware image
editing. In (14), an enhanced GAN-based model is pro-
posed for high-resolution image inpainting, based on
aggregated contextual transformations.

Transformers have become a powerful choice for
image inpainting (15; 16; 17). The T-former model
(15) introduces a transformer-based approach with an
efficient attention mechanism that reduces computa-
tional complexity, effectively addressing CNN lim-
itations like local priors and fixed spatial parame-
ters through resolution-dependent attention. Another
transformer-based model (16) handles large image holes
by integrating both transformer and convolutional fea-
tures effectively. The Continuous-Mask-Aware Trans-
former (CMT) (17) introduces a continuous mask to
capture token errors, improving masked self-attention
with overlapping tokens and refining inpainting results
iteratively.

More recently, diffusion models—an alternative class
of generative models—have been employed in image
inpainting tasks (18; 19; 20; 21; 22). These models
can be categorized as either preconditioned, which of-
fer fast inference but are expensive to train, or postcon-
ditioned, which require no additional training but are
computationally slower. LatentPaint (21) bridges these
two paradigms by employing forward-backward fusion
in a latent space, enhanced with a novel propagation
module. Similarly, Latent Diffusion Models (LDMs)
proposed in (19) exploit the latent space of powerful
pretrained autoencoders, enabling high-resolution syn-
thesis while reducing computational overhead.

1.3. Applications of Semantic Masks

Semantic masks, which completely obscure specific
facial components, may present a more challenging task
for image inpainting compared to random masks that
leave parts of the main components of the face visible.
Semantic masks require more structured and context-
aware restoration. In facial recognition, semantic masks
are used to protect privacy by masking certain facial
features while preserving key identity markers (23; 24).
Additionally, in medical imaging, they are employed to

reconstruct facial features in cases of trauma or surgery,
facilitating surgical planning and recovery visualization
(25; 26). In creative industries, semantic masks en-
able accurate restoration or modification of facial fea-
tures for digital art and content creation (27). These di-
verse applications highlight the broad utility of semantic
masks in improving image restoration techniques across
multiple domains.

1.4. Summary of Contributions

e Performance Analysis of Pre-trained Models on
Semantic Masks:

This paper evaluates the state-of-the-art image in-
painting methods for reconstructing human faces
using semantic masks. We assess these methods’
capabilities to restore the main components of the
human face, rather than using random masks—a
focus that has not been studied before. Unlike ran-
dom masking, which may leave parts of the main
components visible, semantic masking completely
obscures them, potentially posing a greater chal-
lenge for inpainting methods.

Restoring human faces with semantic masks in-
volves addressing the distinct challenges posed by
each facial component. For example, hair requires
modeling texture, flow, and color continuity; eyes
demand symmetry, sharpness, and precise recon-
struction of the iris and eyelashes; and the mouth
involves the complex dynamics of teeth, lips, and
proper alignment with the jawline.

e Retraining Models to Improve Performance:

Additionally, we investigate the impact of different
masking strategies on inpainting performance. To
improve inpainting accuracy, we conduct three re-
training processes using semantic masks, random
masks, and a combination of both. The combined
approach is proposed to improve the model’s con-
textual awareness and inpainting performance.

1.5. Paper Layout

Section 2 describes the benchmark setup, includ-
ing model selection, dataset, computing machine, and
evaluation metrics. In Section 3, the selected models
are compared at different resolutions (Section 3.1), and
their limitations are highlighted (Section 3.2). Section
4 focuses on retraining the best-performing model us-
ing various masking strategies: random, semantic, and
mixed masks. Future research directions are discussed
in Section 5, followed by conclusion remarks in Section
6.



2. Benchmark Setup

2.1. Model Selection from Candidate Pool

The methods considered for comparison are listed in
Table 1. According to MAT (16), four methods—MAT,
LaMa, Co-Mod-GAN, and MADF—were identified as
the most effective for face inpainting among nine eval-
uated techniques (AOT-GAN, MAT, LaMa, Co-Mod-
GAN, MADF, ICT, HiFill, DeepFill v2, EdgeConnect)
(14; 16; 12; 28; 29; 30; 31; 32; 33). Among these,
MAT was found to be the most effective for inpainting
faces with both small and large masks, as demonstrated
in (16). In (16), these methods were tested using free-
form masks generated by sampling rectangles and brush
strokes of random shapes, sizes and locations. In con-
trast, this study evaluates these methods using seman-
tic masks to specifically assess their ability to restore
key facial components. Therefore, among these nine
methods, MAT, LaMa, Co-Mod-GAN, and MADF are
adapted in the current work.

However, a newer model, CMT (17), was found to
outperform MAT in facial inpainting, followed by MAT,
in a comparison of five methods (PIC (39; 38), ICT,
BAT (37), MAT, and CMT) in (17). Thus, CMT is also
adopted in the current work. Two other newer models
with great potential are considered in this work. The
first approach, MI-GAN (35), is a lightweight model
primarily designed to run on mobile devices, yet it
achieves performance comparable to state-of-the-art in-
painting methods (MAT, LaMa, HiFill, Co-Mod-GAN,
SH-GAN (36), ZITS (40), LDM (19)). A pluralistic im-
age inpainting model with large masks represents an-
other new model (34). This model is based on discrete
latent codes and is referred to as “Latent or Latent-
based” in this paper. Latent-based model (34) outper-
forms MAT, LaMa, MaskGIT (41), and PIC (39), as
demonstrated in (34).

MAT (16) includes two models CelebA and FFHQ-
512, both of which are evaluated in this study. The
MAT CelebA model comes in two resolutions: 512x512
and 256x256, and both were tested. In this study, we
used the base model of LaMa, as the authors (12) found
that it outperformed other LaMa models on wide masks
and did not significantly impact performance on narrow
masks. LaMa was adapted to accept images and masks
of any resolution (12). Since the CelebA dataset has a
resolution of 1024x1024, we initially used this higher
resolution but found LaMa to be ineffective at such
high resolutions. Consequently, we evaluated LaMa at
resolutions of 512x512 and 256x256. Co-Mod-GAN
presents two versions: one implemented in an older
version of TensorFlow and one in PyTorch. We used

the PyTorch version for compatibility.Co-Mod-GAN in-
cludes two models with resolutions of 512x512 and
1024x1024, both of which were evaluated in this study.

RePaint (18), the diffusion-based model, was initially
considered but ultimately evaluated on only 10 images
due to its computational inefficiency: it requires about
10 hours to inpaint 10 images with 12 semantic mask
classes (see mask classes in Table 3), with each class
representing a different part of the face. RePaint takes
about five minutes to inpaint a single image with one
semantic mask class, making it impractical for large-
scale testing.

In contrast, the other methods evaluated in this study,
including MI-GAN, CMT, MAT, LaMa, Co-Mod-GAN,
and MADF, can inpaint approximately 2,000 images
within five minutes for a single semantic mask class,
making them much more suitable for the scope and
scale of this comparison. Latent-based model takes 10
minutes to inpaint about 2,000 images for a single se-
mantic mask class, which is still acceptable.

2.2. Dataset

This study utilizes the CelebA dataset (42), which
comprises about 30,000 high-quality images at a resolu-
tion of 1024x1024. The dataset provides a broad range
of diversity in age, ethnicity, and background, as well
as a variety of accessories like eyeglasses, sunglasses,
and hats. It also includes detailed annotations for fa-
cial components, making it well-suited for training and
evaluating face inpainting models with semantic masks.
Some models require specific resolutions, so the images
are rescaled accordingly to ensure compatibility.

2.3. Computing Resources

The following table outlines the specifications of the
computing machine used for the experiments. It in-
cludes details on the GPU model, memory used, and
other relevant components that contributed to the per-
formance of the system during the testing phase. Effi-
cient hardware resources played a crucial role in accel-
erating the training and inference processes, especially
when working with high-resolution images and com-
plex models. Additionally, the computational capacity
allowed for multiple retraining scenarios and extensive
evaluation of different inpainting methods.

2.4. Masks Generation

Various mask generation policies have been proposed
including narrow masks, wide masks, box masks, box-
and-narrow combination masks, and free-form masks



Method \ Year Resolution(s) Model(s)
Latent (34) 2024 256 CelebA
MI-GAN (35) 2023 256 FFHQ
CMT (17) 2023 256 CelebA
SH-GAN (36) 2023 512 FFHQ
MAT (16) 2022 512,256 CelebA-256/512,
FFHQ-512
RePaint (18) 2022 256 CelebA
ICT (30) 2022 256 FFHQ
AOT-GAN (14) 2022 512 CelebA
LaMa (12) 2021 1024,512,256 CelebA-base
Co-Mod-GAN (28) | 2021 1024, 512 FFHQ
MADF (29) 2021 512 CelebA
BAT (37) 2021 256 CelebA
PIC (38) 2021 256 CelebA
HiFill (31) 2020 512 CelebA
DeepFill (32) 2019 256 CelebA
EdgeConnect (33) 2019 256 CelebA

Table 1: Overview of different image inpainting methods,

including publication year, resolutions, and corresponding model information. The

methods selected for comparison are highlighted in bold: Latent-based, MI-GAN, CMT, MAT, RePaint, LaMa, Co-Mod-GAN, and MADF. Note:
A total of 13 result extractions were performed, as some methods were evaluated across multiple resolutions and models.

Component | Specification

GPU Model NVIDIA A800 Active

GPU Memory 40 GB per GPU

Number of GPUs 2

Driver Version 525.116.04

CUDA Version 12.0

CPU Intel Xeon w9-3495X

CPU Cores 56 Cores, 1.9-4.8 GHz

RAM 256 GB (8 x 32 GB)
4800 MT/s

Total Storage Usage | 286 GB

Table 2: System specifications of the computing machine used in the
experiments.

(12; 13). The method of mask generation significantly
influences overall model performance (12).

In this study, we evaluate the performance of dif-
ferent inpainting models using semantic masks. The
dataset used in (43) includes images with correspond-
ing semantic segmentations based on a 19-class model,
where each pixel in the image is represented by an inte-
ger value from 0 to 18, corresponding to specific classes.
Additionally, a more detailed segmentation is provided
by a 34-class model from (43), which captures addi-
tional regions such as the cheeks, eyelids, forehead, jaw,
and chin. However, the availability of labeled data for
the 34-class model is limited (43; 44).

(a) Original image

(b) Overlaid segmentation

Figure 1: Original image with overlaid segmentation from CelebA
dataset (42). The mouth region is divided into three segments: upper
lip, mouth, and lower lip. The eyes, eyebrows, ears, hair, neck, skin,
nose, and earrings are also segmented. An example of the CelebA 19-
class model for face semantic segmentation used in the current study.

In this study, we used the 19-class model for face se-
mantic segmentation with the CelebA dataset from (42)
(see an example in Figure 1). Each image in (42) is ac-
companied by 19 corresponding mask images in black
and white. The CelebA dataset provides segmentations
for various facial regions, including the eyes, eyebrows,
nose, upper lip, mouth, lower lip, hair, neck, ears, eye-
glasses, skin, clothing, necklace, earrings, and hat.

We generate 12 mask classes, as shown in Table 3.
The mask either obscures one component or a combi-
nation of components. Figure 2 shows the masks for
classes (I, K, and L).



Mask Index | Face Eyes Nose Lip(L) Lip(U) Mouth Hair Ears
A X v X X X X X X
B X X v X X X X X
C X X X v v v X X
D X X X v X X X
E X X X X v X X X
F X X X X X v X X
G X X X X X X v X
H X X X X X X X v
I v X X X X X X X
J X X v v v v X X
K X v v v v v X X
L v X X X X X

Table 3: Mask class index and corresponding facial parts combinations. Note: “Ears” includes the right ear, left ear, and earring and “Eyes”
includes the eyebrows. “Lip (L)” refers to the lower lip and “Lip (U)” refers to the upper lip. The face refers to the skin excluding the neck, eyes,

nose, mouth, and ears. A “v"” indicates the masked parts.
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(a) Face mask class (index I, see Table
3) that includes the skin but excludes the
nose, mouth, lips, eyes, and eyebrows
for one random sample.

(b) Mask class of index K (see Table
3) for one random sample.

(c) Mask class of index L
for one random sample.

Figure 2: Combined mask classes showing (a) Face mask class (index
I), (b) Mask class of index K, and (c) Mask class of index L for random
samples. Note: the masked areas are in black.

2.5. Evaluation Metrics

To evaluate different inpainting methods, we use per-
ceptual metrics (FID, P-IDS, and U-IDS). Metrics like
PSNR and SSIM do not correlate well with human per-
ception of image quality (16). Among the perceptual
metrics, FID is the most commonly used, as demon-
strated in (34; 16; 17; 12; 35; 28; 29).

FID (Fréchet Inception Distance): Measures the dis-
tance between real and generated image distributions in
feature space. It is computed as follows:

FID(p,, py) = |Jur — [ + Tr (z, +3, - z(grzg)l/z) 1)

where p, and p, represent the real and generated image
distributions, respectively. Additionally, u, and p, are
the mean feature vectors for the real and generated
images, while X, and X, denote the covariance matrices
for these distributions.

P-IDS (Perceptual Inception Distance Score): A vari-
ant of FID used to assess perceptual similarity, designed
to align more closely with human visual perception, is
defined as follows:

N

P-IDS(p,, p) = % (e - FDIR)

i=1

@)

where f(x) is the feature vector extracted from the
Inception network for image x, and x; and x. are the



real and generated images, respectively. The metric
averages the perceptual differences over all samples.

U-IDS (Unsupervised Inception Distance Score): As-
sesses the quality of generated images using an unsuper-
vised approach with the Inception model, without the
need for labeled data, and it is calculated as follows:

N
UIDS(py, o) = Sl -4 ®
where f,(x) is the unsupervised feature vector extracted
from the Inception network for image x, and x; and xlf
represent the real and generated images, respectively.
This metric evaluates the similarity between distribu-
tions of real and generated images in the feature space.

3. Comparative Study

In this section, we compare the performance of var-
ious image inpainting models at different resolutions
across multiple mask classes. Our analysis reveals that
models perform differently depending on both the type
of mask used and the resolution of the input images. The
results highlight the strengths and weaknesses of each
model in handling specific facial features, such as eyes,
mouth, and hair. The following subsections provide a
detailed comparison based on three key evaluation met-
rics: FID, P-IDS, and U-IDS, followed by a discussion
of the strengths and weaknesses of each model as ob-
served across various test conditions.

3.1. Scores Comparison

Comparing the results of this study with those in
(16), we observe that semantic masks are more chal-
lenging to inpaint than random masks, as reflected in
the evaluation metrics (higher FID values for semantic
masks). Semantic masks fully obscure key facial fea-
tures, whereas random masks may leave parts of these
features visible, facilitating the inpainting process.

The models selected for comparison operate at dif-
ferent resolutions, with some capable of handling mul-
tiple resolutions. They are categorized into three groups
based on their resolution:

3.1.1. Resolution 256

The FID values for different methods at a low reso-
lution of 256 across mask classes (A-L) are shown in
Table 4. Based on these FID values, MI-GAN ranks
among the top three performing methods in 10 mask
classes, Latent-based in 9 mask classes, and MAT in
8 mask classes. MI-GAN is the top-performing method

in 4 mask classes, while Latent-based leads in 6 mask
classes. As a relatively small model primarily de-
signed for mobile devices, MI-GAN performs well. The
changes in FID values across different mask classes and
methods are consistent.

MI-GAN achieves the highest P-IDS value across all
mask classes (see Table 4). MI-GAN, LaMa, and MAT
generally emerge as the top three performing methods
across different mask classes based on P-IDS values.
For U-IDS values (see Table 4), MI-GAN achieves the
highest U-IDS in 10 mask classes. MI-GAN, Latent-
based, and MAT are generally the top three performing
methods across different mask classes based on U-IDS
values.

3.1.2. Resolution 512

The FID, P-IDS, and U-IDS values for different
methods at a resolution of 512 across various mask
classes are shown in Table 4. Based on FID, MAT with
the FFHQ model ranks among the top three perform-
ing methods across 12 mask classes, being the best-
performing method in 7 of them. MAT with the CelebA
model ranks among the top three performing meth-
ods across 11 mask classes, while the MADF model
ranks among the top three performing methods across
9 mask classes. However, Co-Mod-GAN generally out-
performs MADF in both P-IDS and U-IDS.

Figure 3 illustrates the performance of different mod-
els in restoring facial key components at a resolution
of 512. The figure highlights some limitations of these
models. For example, in eye inpainting, LaMa and
MADF generate blurry and mixed eyes. For nose
masks, LaMa generates a small nose and a dual mouth.
With face masks, MAT increases the thickness of the
eyelashes; LaMa generates shorter face and face reflec-
tions; Co-Mod-GAN produces visible borders around
the nose; and MADF generates an additional eye, over-
riding the existing one. For hair masks, MADF pro-
duces hair that lacks a realistic pattern. For mouth and
nose masks, MADF generates teeth that override the
lips.

3.1.3. Resolution 1024

Only two models, Co-Mod-GAN and LaMa, were
trained to handle high-resolution images. The values for
FID, P-IDS, and U-IDS are presented in Table 5. Co-
Mod-GAN outperforms the LaMa model in 11 out of
the 12 mask classes. The performance of Co-Mod-GAN
and LaMa with high-resolution inpainting is illustrated
in Figures 4 and 5. This demonstrates the capability
of Co-Mod-GAN to better adapt to complex inpainting
tasks at higher resolutions.



[ 256 Resolution [ 512 Resolution

FID
Idx| MI-GAN Latent MAT CMT LaMa [ MAT MAT; LaMa Co-Mod-GAN MADF
A | 1.175 1.685 1.800  2.098 1.141 1206 5.965 2.204
B | 1.086 1.407 1.386 0.951 0.661 2.147 1.103 0.734
C 1.744 2610 2677  3.729 1.370  3.682 2.261 1.425
D | 0917 1.327 1.414 1.202 0.601 1224 0914 0.589
E | 1.276 1.154 1.239 1396 0.648 1.313  0.807 0.625
F | 1.734 2793 2.877  2.053 | 2054 1375 3.503 1.166
G 8.541 9.757  14.109 17.384 | 8.928 7.406 21.869 16.546
H | 3.260 3.784 4011  3.909 2956 3.963 3.994 3.272
I 7.603  6.130 5709 9252 | 5418 5.056 11.176 10.136
T | 3.071 2.155  2.833 3.995 1.619 5.811 3.038 1.711
K 2799 3472 3739  5.002 2364 11.503 3.962 3.172
L | 66.48 46.35 288.99 11435 | 56.72 85.56 176.68 114.76
P-IDS
Idx| MI-GAN Latent MAT CMT LaMa | MAT MAT, LaMa Co-Mod-GAN MADF
A | 246 0.75 0.25 0.40 5.47 0.10 487 0.50
B | 3.25 0.80 0.75 1.85 965 1155 0.65 6.10
C | 251 1.30 0.85 0.65 992 962 090 6.27
D | 2.01 1.20 1.25 1.76 928  10.04 4.62 6.57
E | 1.60 1.00 1.00 1.40 7.2 8.68  4.86 4.81
F | 025 0.00 0.00 0.00 0.08 213 025 229 1.06
G | 045 0.00 0.00 0.00 0.00 1.06 349  0.00 0.00
H | 1.38 0.07 0.21 0.14 0.21 353 533 1.66 1.38
I |0.15 0.00 0.00 0.00 0.00 0.65 255 000  0.00 0.00
T | 251 1.05 1.05 0.70 0.35 9.07  10.88 0.05 5.56
K | 1.85 0.35 0.10 0.05 400 355  0.00 0.50
L | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
U-IDS
Idx| MI-GAN Latent MAT CMT LaMa | MAT MAT, LaMa Co-Mod-GAN MADF
A ] 9.66 4.94 2.11 3.01 12.73 0.13 11.02 1.98
B | 14.10 7.87 8.70 11.72 | 2292 26.15 272 18.53
C | 845 9.35 6.27 248 2028 2296 2.96 16.84
D | 13.75 9.23 8.18 11.57 2577 15.13  23.28 21.20
E | 1246 10.53  9.60 9.68 2372 2558 1515 21.49
F | 057 0.25 0.00 0.20 245 462 094 4.17
G | 1.36 0.00 0.10 0.00 0.00 3.08 723 0.00 0.03
H | 3.15 0.41 0.66 0.83 733 12,66 450  4.05
I | 070 0.00 0.15 0.15 0.00 292 7.07 000  0.00
T ] 9.00 7.22 5.01 1.90 19.65 20.85 0.10 14.11
K | 6.17 2.92 0.72 0.25 940 920  0.00 1.50
L | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: FID, P-IDS, and U-IDS values for various methods across mask classes (A-L) at resolutions of 256 and 512. The three top-performing
methods (i.e., those with the lowest FID values, those with the highest P-IDS values, those with the highest U-IDS values) for each mask class at
each resolution are highlighted in blue. The 512-resolution MAT includes two models: CelebA (denoted as MAT) and FFHQ (denoted as MAT}).
Based on the FID, P-IDS, and U-IDS values, MAT] consistently ranks among the top three models for different mask classes.
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Figure 3: Restoration of key facial components at 512 X 512 resolution using various models. Some model limitations include: blurry or mixed
eyes, a short nose, fused teeth, visible mask borders, blended lips, a shortened face, thick black eyelashes, unrealistic hair, and teeth overriding the
lips. View better when zoomed in. The “gt” refers to the ground truth image, “MN” refers to the mouth and nose mask class (Class J in Table 3),
and “MNE” refers to the mouth, nose, and eyes mask class (Class K in Table 3). The MAT method includes two models: CelebA (denoted as MAT)
and FFHQ (denoted as MAT}).



FID P-IDS U-IDS

Idx| Co-Mod-GAN LaMa| Co-Mod-GAN LaMa | Co-Mod-GAN LaMa
A | 2223 5.904 | 2.41 0.15 4.87 0.20
B 0.947 2.299 | 8.35 0.35 18.45 1.15
C | 2818 5.075 | 9.57 0.00 16.42 0.03
D | 0.764 1.031 | 11.94 5.67 24.28 14.43
E 0.722 0.369 | 13.24 1891 | 2691 31.02
F 1.837 5.363 | 3.84 0.74 6.21 1.19
G | 11.597 41.848| 0.40 0.00 1.21 0.00
H | 3.838 3.864 | 3.11 2.21 6.50 5.22
1 11.235 33.611| 0.00 0.00 0.00 0.00
J 3.934 9.202 | 3.21 0.00 7.99 0.00
K | 6.23 18.583| 0.00 0.00 0.38 0.00
L | 65.73 206.07| 0.00 0.00 0.00 0.00

Table 5: FID, P-IDS, and U-IDS values for (1) Co-Mod-GAN and (2) LaMa at a high resolution of 1024 are reported across mask classes (A-L).
The top-performing method (i.e., the one with the lowest FID value, the highest P-IDS value, or the highest U-IDS value) for each mask class is

highlighted in blue.

256

512

1024

Figure 4: Restoring face key components at 256, 512, and 1024 res-
olutions using LaMa Model. The LaMa model faces challenges in
restoring effectively at resolutions higher than 256. View better when
zoomed in.
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Figure 5: Restoring key facial components at 512 and 1024 resolu-
tions using the Co-Mod-GAN model. The Co-Mod-GAN model per-
forms effectively at high resolutions, such as 1024, and is comparable
to its performance at 512. View better when zoomed in.
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Co-Mod-GAN demonstrates reliable performance for
high-quality image inpainting, while LaMa, though ca-
pable of handling various resolutions, does not scale
well at higher resolutions. This results in Co-Mod-GAN
being the more effective model for tasks requiring high-
resolution image restoration.

3.2. Findings and Limitations Across Models
The following observations and limitations (summa-
rized in Table 6) were identified for each method based

on the analysis of all the generated images. Although
some methods achieve relatively low FID values, they
still have limitations and may not always perform opti-
mally. This indicates that no single method can be con-
sidered superior in all scenarios, and there is still room
for improvement. Overall, these observations suggest
that ongoing research and refinement are needed to de-
velop more versatile and reliable inpainting methods.

All inpainting models consume less than 0.3 seconds
to inpaint one image, except for RePaint, which requires
approximately 5 minutes. The computation time for
each model is summarized in Table 7.

The limitations include various inconsistencies
across facial components. For example, eyes may ap-
pear unrealistic with issues like thick eyelashes, pupil
misalignment, or full black eyes in some models. The
mouth may exhibit problems such as merged lips, unre-
alistic teeth, or misaligned lower lips. Skin inconsisten-
cies include visible mask borders, skin tones that do not
blend well, and sometimes unnatural reflections or dark
skin patches. Hair restoration often suffers from unreal-
istic textures, color continuity problems, or incomplete
coverage, especially at higher resolutions. Ears may be
missing, incomplete, or replaced by hair in some cases.
Additionally, noses, while generally well restored in
most models, sometimes exhibit incomplete or unrealis-
tic results. These imperfections can significantly impact
the overall realism of the generated images. Overall,
while these models generally perform well in specific
tasks, such limitations indicate there is still room for
improvement in generating more accurate and seamless
facial inpainting.



Table 6: Common limitations and observations for different inpainting models.

Model Details

1. MAT 1. Eye: MAT may increase the size of the lacrimal caruncle and the thickness of the eyelashes.

2. Mouth: MAT produces better results for full-mouth restoration (a mask of index C) rather than
for a partial restoration. MAT reduces gummy smiles, and frequently generates plump lips.

. Face: MAT lightens skin tone, thins faces, and sometimes enlarges lips when not masked.

. Ears: May generate incomplete ears or only one ear visible while the other is replaced by hair.
. Hair: Hair often looks realistic in terms of flow and color continuity.

. Nose: Nose blends seamlessly with the skin and looks realistic.

2. Co-Mod-GAN . Eye: Eyes look realistic, but eyebrows may not blend seamlessly with the surrounding skin.
. Mouth: Lower lip color mismatch, visible borders, and unrealistic teeth.

Face: Inpainted skin borders sometimes don’t blend well, dual eyes may appear.

Ears: Generates incomplete ears.

Hair: May use masked area to enlarge the face, hair continuity is not always maintained.

Nose: Works well, but borders of the inpainted nose may not blend seamlessly.

3. MADF Eye : Eyes are often unrealistic, missing pupils, blurry, or mixed.

Mouth : Teeth often appear unrealistic, lips may blend with teeth or appear blurry.
Face: Dual eyes/eyebrows, and inpainted skin borders may not blend well.

Ears: May generate incomplete ears.

Hair: Hair appears unrealistic with unnatural continuity.

Nose: Nose blends seamlessly and looks realistic.

4. CMT Eye : Eyes may have thick eyelashes, light or gray eyebrows.

. Mouth : Lips may fuse into a single piece without separation; teeth may be unrealistic.
Face: Skin sometimes appears dark or blackish.

. Ears: One ear missing or replaced with hair.

Hair: Hair appears unrealistic, often in chunks.

Nose: Nose may be incomplete.

5. Latent-based Eye : Eyes may have black eyelashes.

Mouth : Teeth may be mixed, cracked, or uneven.
Face: Mask borders visible, lashes enlarged.
Ears: Masked ear may be inpainted with hair.
Hair: Hair often looks realistic.

Nose: Nose looks realistic.

6. MI-GAN Eye : Eyes may have thick black eyelashes, pupil position issues, or different colors.
Mouth : Teeth may be connected, cracked, or uneven; lips may be swollen.

Face: Sometimes enlarges lower lip or thickens eyelashes; borders visible.

Ears: Ears may be incomplete or missing.

Hair: Part of the hair mask may be inpainted with ear or background elements.

Nose: Nose looks realistic.

7. LaMa Eye : Eyes may be fully black with no pupils.

Mouth : Teeth may not be restored; lips may appear with missing or small teeth.
Face: May generate face reflections if the face is masked.

Ears: Does not restore ears, replacing them with hair.

Hair: Hair restoration ineffective, especially at higher resolutions.

Nose: Nose restoration fails above resolution 256.

8. RePaint . Eye : Pupils may have different colors; very black eyelashes.

. Mouth : Lower lip may be bigger, with missing lower jaw teeth.

. Face: Face looks realistic.

. Ears: Ears may be incomplete.

. Hair: Hair looks realistic, but RePaint ignores fine details. For example, if the mask doesn’t
fully cover the hair, RePaint doesn’t utilize the residual hair.

6. Nose: Nose looks realistic.
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4. Evaluation of Models Retrained with Semantic,
Random, and Mixed Masks

The resolution of the images used for this evaluation is
512. Since MAT has demonstrated the greatest potential for
inpainting images at this resolution, as shown in Table 4, it
was chosen for the experiments described in this section.

In this evaluation, MAT was retrained using semantic
masks. To compare the performance of MAT trained with
semantic masks against MAT trained with random masks, a
version of MAT was also retrained with random masks under
the same configuration to ensure fairness. It is worth noting
that the retrained MAT achieved FID, P-IDS, and U-IDS val-
ues close to those of the pretrained MAT model provided by
its authors. These models were then evaluated for their ability
to inpaint faces using semantic masks.

MAT was retrained using 24,000 images and tested on a
dataset of 6,000 images. Each training session took approxi-
mately 7 days and 13 hours. The FID values achieved on se-
mantic masks by training MAT with semantic masks are com-
pared to the FID values achieved on semantic masks by MAT
trained with random masks. It is shown that MAT trained with
random masks outperforms MAT trained with semantic masks
for inpainting faces with semantic masks

MAT trained with random masks alone can outperform
MAT trained with semantic masks alone for inpainting tasks
because random masks promote better generalization and re-
duce overfitting. Training with random masks exposes the
model to a diverse range of missing regions, encouraging it to
learn broader contextual relationships across the entire image.
This results in a more robust model capable of handling var-
ied inpainting scenarios. In contrast, semantic masks provide
predefined regions, which can lead to overfitting of specific
features and reduce the model’s ability to generalize. As a re-
sult, MAT trained with random masks alone tends to produce
more realistic inpainted images, achieving lower FID scores
compared to MAT trained with semantic masks alone.

To leverage the strengths of both random and semantic
masks and improve inpainting performance, we retrain the
MAT model using a combination of both mask types. This
combined approach, referred to as the “mixed” masking strat-
egy, exposes the model to a diverse set of regions for inpaint-
ing. By randomly selecting between random and semantic
masks for each image, the model is forced to learn a broader
range of contextual relationships. This allows it to adapt to
varying types of missing information, which is particularly
beneficial for inpainting complex features such as facial com-
ponents.

The inclusion of semantic masks provides the model with
more structured guidance for inpainting, while random masks
encourage flexibility and better generalization by present-
ing the model with more unpredictable scenarios. This hy-
brid strategy enhances the model’s context-aware capabilities,
leading to more realistic and accurate reconstructions of fa-
cial features, especially in regions where fine details are cru-
cial. The model trained with mixed masks achieves a lower
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mouth

Figure 6: Restoring key facial components using 512-resolution MAT
models trained with random, semantic, and mixed masks. Train-
ing with mixed masks enhances inpainting performance. View better
when zoomed in.

FID value across almost all mask indices, as shown in Table
8. This suggests that combining the two masking strategies
allows the model to outperform its counterparts trained with
only random or only semantic masks, particularly for inpaint-
ing images with semantic masks. The mixed mask approach,
therefore, strikes an optimal balance between flexibility and
structure, enabling the model to handle a wider variety of in-
painting tasks with greater fidelity and realism.

Based on Table 8, there is a notable difference between
the FID values for MAT trained with random, semantic, and
mixed masks for the mask classes with indices (C, G, and 1),
corresponding to full mouth, hair, and face masks. To further
illustrate these differences, we randomly select samples and
visualize them in Figure 6.

For the face mask, as shown in Figure 6, MAT trained with
random masks achieves a blended color, but the face appears
short and inconsistent. MAT trained with semantic masks re-
sults in a face size and shape closer to the ground truth; how-
ever, it does not blend well with the surrounding color. The
face exhibits a noticeably different color tone compared to the
nose. MAT trained with mixed masks achieves better results
than MAT trained with only random masks or only semantic
masks.

For the hair mask, MAT trained with random masks may
struggle with hair flow, while MAT trained with a semantic
mask may face challenges with color continuity. Using MAT
trained with mixed masks achieves a better balance between
hair flow and color consistency, as shown in Figure 6.

For the mouth mask, MAT trained with mixed masks may
outperform both MAT trained with a semantic mask and MAT
trained with a random mask, as shown in Figure 6.

5. Future Work

A promising direction for future work is the development of
specialized Al models that focus on individual facial compo-



Table 7: Performance summary for various models

Model Performance
MAT Inpainting 2,000 images takes approximately 5 minutes at a resolution of 512,
and about 3 minutes to inpaint 2,000 images at a resolution of 256.
Co-Mod-GAN | Inpainting 2,000 images takes 1 minute at resolution of 512 and 2 minutes at resolution of 1024.
MADF Inpainting 2,000 images takes approximately 6 minutes.
CMT Inpainting 2,000 images takes about 1 minute.
Latent-based Inpainting 2,000 images takes about 10 minutes.
MI-GAN Inpainting 2,000 images takes about 2 minutes.
LaMa Inpainting 2,000 images takes 30-60 seconds at 256x256, 90 seconds at 512x512,
and 5 minutes at 1024x1024.
RePaint Inpainting takes about 5 minutes per image.
Mask Type tool, the authors reviewed and edited the content as needed
Idx | Random Semantic Mixed and take full responsibility for the content of the published
A 1.4597 1.7819 1.2535 article.
B 0.9326 0.9510 0.9280
C 2.0123 3.7290 1.5901 .
D | 07546 12019  0.7056 7. Conclusion
E 0.7410 1'3?62 0.5638 In conclusion, while Al-based inpainting methods demon-
F 2.3592 2.053¢ 1.2433 3 . e . .
- strate promising capabilities in restoring key facial compo-
G 12.5149 17.3838 7.1022 . R .
nents with realistic and contextually appropriate results, there
H 3.9033 3.9087 3.3346 . . .
are still areas that require improvement. Challenges persist in
I 8.1616 9.2519 5.6928 . & . . -
achieving seamless blending, handling complex facial struc-
J 2.4613 3.9950 2.2000 - . .
tures, and preserving finer details, such as those in the eyes,
K 3.9571 2-0020 3.0273 teeth, hair, and eyelashes. Despite these challenges, ongoin
L | 115513 114353 130.824 > 20C €Y o ooP 868, ONEOIE

Table 8: Comparison of FID values for MAT trained with random,
semantic, and mixed masks. “Mixed” refers to training with both ran-
dom and semantic masks, where each image is randomly masked with
either a random mask or a semantic mask. The two top-performing
methods (i.e., those with the lowest FID values) for each mask class
are highlighted in blue. The results show that MAT trained with mixed
masks outperforms MAT trained with either only semantic masks or
only random masks in terms of FID, particularly for inpainting images
with semantic masks.

nents. For example, an Al model could be trained specifically
for inpainting hair, which could potentially improve perfor-
mance by allowing the model to learn more specialized pat-
terns and structures associated with that particular feature.

Additionally, a combined approach could be proposed,
where the model is trained using both random masks and
masks focusing specifically on hair. This approach may help
the Al learn not only the detailed characteristics of individual
facial parts but also the relationships between different face
components, ultimately improving the model’s ability to per-
form more accurate and context-aware inpainting tasks.

6. Declaration of Generative AI and Al-assisted
Technologies in the Writing Process

During the preparation of this work, the authors used Chat-
GPT to improve the readability of the paper. After using this
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advancements in Al algorithms and deep learning techniques
offer significant potential for overcoming these limitations in
the near future.

Furthermore, while semantic masks present a significant
challenge for key facial component restoration, they can en-
hance the AI model’s contextual awareness and inpaiting per-
formance when combined with random masks. This hybrid
approach not only improves the inpainting process but also
enables more accurate and natural facial feature restoration in
diverse settings.
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