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Abstract—This work proposes a novel method for scaling
multi-timestep security-constrained optimal power flow in large
power grids. The challenge arises from dealing with millions of
variables and constraints, including binary variables and non-
convex, nonlinear characteristics. To navigate these complexities,
techniques such as constraint relaxation, linearization, sequen-
tial optimization, and problem reformulation are employed. By
leveraging these methods, complex power grid problems are
solved while achieving high-quality solutions and meeting time
constraints. The innovative solution approach showcases great
robustness and consistently outperforms benchmark standards.

Index Terms—power grid optimization, power grid software,
security-constrained optimal power flow, large-scale optimization

I. INTRODUCTION

The power grid stands as one of the most significant
engineering achievements of the 20th century [1]. However,
optimizing power grid dispatch presents a substantial challenge
in ensuring efficient and reliable energy distribution. As mod-
ern power systems grow increasingly complex, finding robust
solutions becomes imperative. To address these challenges and
enhance grid resilience, the US Department of Energy (DOE)
has been actively involved in initiatives focused on advancing
grid technologies. These efforts aim to modernize grid oper-
ating models and software, integrating new technologies and
methodologies to adapt to the complexities of the evolving
grid, ensuring its reliability, resilience, and security.

The optimal power flow (OPF) problem is the core op-
timization challenge in grid planning and operations [2]. It
involves finding the best settings for power generation, demand
flexibility, energy storage, and grid control to maximize grid
objectives. Security-constrained optimal power flow (SCOPF)
adds grid resiliency constraints to this optimization.

Today’s industry-standard SCOPF methods were developed
in an era of less capable and costlier computers, when general-

purpose optimization solvers were in their infancy. To sim-
plify calculations, most often, linearizing assumptions were
made, ignoring voltage and reactive power—referred to as
the DC optimal power flow (DCOPF) [3]. Despite various
improvements, widely-used optimization software, including
production cost models, security-constrained unit commitment
(SCUC), and security-constrained economic dispatch (SCED)
tools, continue to rely on linear OPF assumptions similar
to those in a classical DCOPF problem. There are currently
no widely-adopted industry tools that use the full AC power
flow equations, without linearization, while simultaneously
optimizing both real and reactive power generation [4].

Recent computational and methodological advancements
suggest the potential for substantial enhancements in SCOPF
methodologies. The significant leaps in computational capa-
bilities and the evolution of optimization solvers in recent
times have fuelled investigations into innovative strategies for
grid operations and novel approaches to address SCOPF and
related grid challenges [5]. Moving away from traditional
linear approximations, current research focuses on innovative
methods such as quadratic convex (QC), semi-definite (SDP),
and second-order cone programming techniques [6]–[9]. Nev-
ertheless, it has been observed that SDP relaxation fails to
yield a solution with meaningful physical implications when
applied to solve OPF for numerous practical systems [10].
Additionally, the existing solvers are not as efficient as those
employed for solving linear programming (LP) and second-
order cone programming (SOCP) formulations, especially for
larger systems and problems involving mixed integer aspects.
On the other hand, QC relaxation, as in [11], is more straight-
forward to implement and computationally efficient.

Also, recent studies suggest that SCOPF problems address-
ing both pre-contingency and post-contingency states could
benefit from emerging research in decomposition methods [12]
or stochastic optimization [13] algorithms. These approaches
aim to exploit a similar two-stage problem structure, present-979-8-3503-3120-2/24/$31.00 ©2024 IEEE
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ing new avenues for improving the efficiency and effectiveness
of solving complex power system optimization challenges.

In this paper, we present our innovative approach to address
the challenges of security-constrained optimal power flow
(SCOPF) within the framework of the US DOE’s Grid Opti-
mization (GO) initiatives. Our contributions include leveraging
a two-pronged approach to provide a fast high-quality solution
for the complete AC power flow equations and optimizing both
real and reactive power generation simultaneously. Our novel
decomposition strategy breaks down the SCOPF problem
into sequential sub-problems: the DC and AC models. By
employing specialized solvers for each stage and incorporating
advanced optimization techniques such as quadratic convex re-
laxation and decomposition methods, we significantly improve
the efficiency and accuracy of the solution process.

II. PROBLEM FORMULATION

In this paper, we use the problem statement developed
for the DOE Advanced Research Projects Agency - Energy
(ARPA-E) GO challenge. This problem is quite extensive,
with a main formulation that spans 53 pages [14], plus an
additional 22 pages of supplementary information. There are
a wide range of optimization constraints and variables, includ-
ing limits on real and reactive power at various bus nodes,
voltage constraints, zone-specific reserves, device statuses,
switching intricacies, considerations related to device down-
time and uptime, the number of device starts over multiple
intervals, ramping up and down constraints, and stipulations
on minimum and maximum energy levels across multiple
time intervals, to name a few (See Fig. 1). It’s important
to note that all these constraints appear in both the base
and contingency conditions. The contingency constraints serve
to guarantee system reliability when addressing unforeseen
events and outages. The compact form of the OPF problem is:

max
pjt,θjt

z (pjt, θjt, ujt, . . .)

s.t. G(pjt, θjt, ujt, . . .)=0, H(pjt, θjt, ujt, . . .)≤0
(1)

Where z is the total market surplus, pjt represents the power
value for device j at time t, θjt is the voltage angle, and ujt

is a binary variable representing device switching decisions.
In these equations, G denotes the set of equality constraints,
while H denotes the set of inequality constraints.

III. PROBLEM COMPLEXITY AND TESTING PLATFORM

The network sizes span from a relatively small-scale 73
buses to a highly complex 8316 buses test system. Our dataset
is comprised of 9 network models; 73-, 617-, 1576-, 2000-,
4224-, 6049-, 6708-, 6717-, and 8316-bus configurations. For
larger-scale test cases, we need to deal with over 2 million
binary variables and more than 9 million continuous variables.
We will use the testing platform that is made available by the
Pacific Northwest National Laboratory (PNNL). This testing
platform consists of a single computing node with local mem-
ory storage, equipped with dual 32-core CPUs (64 threads).

The testing criteria consists of three categories, each with
unique power grid scheduling requirements:

• Category 1: Optimal scheduling for an 8-hour period,
with a maximum decision time of 10 minutes.

• Category 2: Optimal scheduling for a 48-hour window,
with a maximum decision time of 2 hours.

• Category 3: Optimal scheduling for 7 days (168 hours),
with a maximum decision time of 3 hours.

A summary of the power grid scheduling requirements for
each category is given in Table I.

IV. PROPOSED STRATEGY

To address the complexities of solving large-scale SCOPF
problem and reducing the solution time, we propose breaking
the original problem into two sequential sub-problems: the
DC and AC modules. The initial subproblem involves the DC
assumption, wherein binary and continuous are optimization
variables. The binary variables returned by the first subprob-
lem are fixed, while the continuous variables are discarded.

In the AC module, our aim is to include all relevant
constraints to accurately represent a realistic grid. However,
in the DC module, we choose not to include all constraints to
reduce the computation time of the first subproblem (module).
Nevertheless, we do incorporate constraints essential for en-
suring the feasibility of the AC subproblem (module), e.g., we
include ramping limits. Without these limits in the DC module,
it might prompt abrupt device shutdowns. Consequently, the
AC module, which accounts for ramping limits, may identify
these shutdowns as infeasible to ramp down.

The DC model is formulated as a mixed-integer linear
problem (MILP) and is solved using the Gurobi solver. On the
other hand, the AC model is a nonlinear (NLP) and nonconvex
problem, which is efficiently solved by the IPOPT solver. By
decomposing the problem and leveraging specialized solvers
for the sub-problem of each module, we increase computa-
tional effectiveness and overall efficiency. Fig. 2 illustrates our
proposed two-stage solution approach and it what follows we
will discuss the novelties of each module.

A. Managing Computational Workload in the DC Model

In managing the computational workload within the DC
model, we implement a series of techniques to reduce com-
plexity and improve efficiency.

a) Eliminating Quadratic Terms by Reformulation:
While quadratic terms can typically be linearized or relaxed
by adding more variables and constraints, we achieved the
transformation of these terms into linear expressions without

TABLE I: Power Grid Scheduling Requirements by Category
(i.e., Testing Criteria)

Category Horizon Time Constraints
1 8 hours look ahead 10 mins
2 48-hour look ahead 2 hours
3 7-day (168-hour) look ahead 3 hours
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Fig. 1: The visual representation of Optimal Power Flow Problem formulation developed by the ARPA-E for the Grid
Optimization challenge. Circles represent major components of this formulation while boxes illustrate the associated constraints.

Fig. 2: Our two-pronged solution approach which includes a DC and an AC module.

introducing new variables or constraints. This artful reformu-
lation significantly reduces computation burden. For example,
the energy balance constraint is represented as [4]:

∑
j∈j

cs,pr
i

pjtu
on
jt +

∑
j∈jshi

pjt +
∑

j∈j
fr
i

pfrjt +
∑
j∈jtoi

ptojt = pit (2)

Here, pjt in the first term of (2) denotes the device power,
as a generator (denoted by the superscript ’pr’) or a consumer
(denoted by the superscript ’cs’). The power limit is given as:

pjt,min ≤ pjt ≤ pjt,max ∀j ∈ jcs,pri (3)

The uon
jt is the device on/off status. The quadratic term

pjtu
on
jt can be linearized by introducing a new variable and

four constraints. However, our approach reformulates the
problem into a linear format without the need for additional
variables or constraints. Equations (2) and (3) are updated as:

∑
j∈j

cs,pr
i

pjt +
∑

j∈jshi

pjt +
∑

j∈j
fr
i

pfrjt +
∑
j∈jtoi

ptojt = pit (4)

pjt,minu
on
jt ≤ pjt ≤ pjt,maxu

on
jt ∀j ∈ jcs,pri (5)

b) Nonconvex Constraints Relaxation: This involves the
utilization of the substitution method and the relaxation of
the equality constraint within the nonlinear constraints into an
inequality constraint. For instance, shunt power (denoted by
the superscript ’sh’) is represented as [4]:

pjt = gshjt v
2
it ∀j ∈ jshi (6)

Equation (6) is non-linear. In an effort to eliminate the non-
linearity, we will first substitute (6) into (4):∑

j∈j
cs,pr
i

pjt +
∑

j∈jshi

gshjt v
2
it +

∑
j∈j

fr
i

pfrjt +
∑
j∈jtoi

ptojt = pit (7)

However, the resulting constraint is nonconvex. The new
constraint can be transformed into a convex constraint by
relaxing the equality constraint into an inequality constraint:∑

j∈j
cs,pr
i

pjt +
∑

j∈jshi

gshjt v
2
it +

∑
j∈j

fr
i

pfrjt +
∑
j∈jtoi

ptojt ≤ pit (8)

Because the right side of (8) represents the power mismatch,
pit, and due to a significant penalty imposed on this mismatch,
the solver strives to minimize it. The mismatch will be
minimized when it equals the value on the left side of (8).
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c) Convex Constraints Linearization: First, we reformu-
late the convex constraints into a quadratic problem. Next, we
relax the quadratic constraints into linear problems using Mc-
Cormick envelope relaxation [7]. This reduction in complexity
leads to a significant reduction in computation time for small
networks and even greater time savings for larger networks.
Specifically, the branch flow limit and penalty are represented
as a second-order cone problem taking the following format:

||Axi +Byi||2 ≤ Czi +D (9)

Here, the left side is the norm function which is a convex
function. Since the right side is linear, (9) is convex. We
reformulated (9) into quadratic by squaring both parts as,

A2x2
i +B2y2

i + 2ABxiyi ≤ C2z2i +D2 + 2CDzi (10)

While (10) is nonconvex, the bilinear and quadratic terms can
be relaxed into linear using a McCormick envelope.

d) Sparse Constraint-matrix: The MILP problem, given
this formulation, is always feasible. Nevertheless, introducing
slack variables aids in faster convergence for the solver. These
slack variables appear in only a few constraints, resulting in
a sparser constraint matrix with more zeros, which facilitates
quicker convergence for the solver.

e) Reduction of Lengthy Linear Expressions: A signif-
icant number of devices are connected to the same bus,
resulting in an extensive power balance constraint in the form
of a lengthy linear expression. This complexity can lead to
numerical issues for the solver. To mitigate this, we introduce
new variables. Even though this increases optimization vari-
ables, our adjustment enhances convergence speed.

f) Reformulating Downtime-Dependent Startup Costs:
We formulated downtime-dependent startup costs using seven
different models, which include three conventional models, the
polyhedron representation transformation algorithm, and three
versions of the clique constraint [15]. Rather than selecting the
model with the fewest variables and constraints, our choice is
based on compatibility with the Gurobi workflow. Specifically,
we opted for the clique constraint model due to its alignment
with Gurobi’s pre-solver, which uses problem structure for
eliminating variables and constraints.

g) Max/Min Constraint Functions Reformulation: The
maximum and minimum equality constraints can be reformu-
lated in two ways: (1) as a linear model or (2) as an MIP
problem. Our analysis suggests that the MIP formulation aligns
more effectively with Gurobi’s structure and workflow.

B. Managing Computational Workload in the AC Model

This subsection’s efforts are focused on managing the
computational workload in the AC module using various
techniques. Notably, we handle the entire AC model without
any linearization or relaxation. This ensures a comprehensive
and accurate representation of the power grid system. The
details of these techniques are presented below:

a) Handling Controllable and Uncontrollable Load:
Every device has a set of cost blocks (m ∈ M) [4]. We
investigated every device to identify pseudo-variables that
cannot be controlled. This approach reduces the number of
variables associated with the cost blocks and eliminates the
need for introducing binary variables. More precisely, the
power is split into bid blocks (m ∈ M), and a cost is applied
to each block. Therefore, the total power of the device is the
sum of the power values in each block:

pjt =
∑

m∈Mjt

pjtm ∀j ∈ jcs,pri (11)

For instance, if the minimum power value of the device is
higher than the power in the first block (m = 1), then the
power value in the first block is uncontrollable. Hence, the
power value in the first block is equal to its maximum power.

b) Post-processing Reserves Calculations: Reserves are
not incorporated into the main optimization framework. In-
stead, after IPOPT completes the simulation, power values are
processed to meet the reserve requirements. This modification
significantly reduces the problem’s complexity. Another ap-
proach we considered was incorporating the reserve constraints
in the DC section and then using the obtained power values
as the maximum power for the AC section.

c) Exact Hessian and Jacobian Matrix: We compute
the first and second derivatives of the Hessian and Jacobian
analytically. Without these matrices, the solver resorts to
less efficient numerical methods for estimation. Supplying
the matrices analytically expedites IPOPT’s convergence but
necessitates a more hands-on code development, rather than
relying on IPOPT’s numerical techniques.

d) Providing Hessian and Jacobian Structure: When
supplying the exact Hessian and Jacobian matrices, we provide
information exclusively for non-zero elements along with
their respective locations, as indicated by the structure. This
approach eliminates the need to provide information for zero-
valued elements, effectively reducing the computational work-
load and the volume of stored data. As a result, it contributes
to faster convergence.

e) Utilizing Vectorized Form and Sparse Matrix in Coor-
dinate format: This minimizes the required storage capacity.
However, when not using the sparse matrix in coordinate
format, we ran out of memory.

f) Receding Ramping Bounds: This approach facilitates
solving the problem through sequential optimization. The
problem is addressed sequentially for large networks because
it is not feasible to solve these extensive networks within
the given time constraints if we attempt to tackle the entire
problem without breaking it down into steps. Therefore, we
recursively update the bounds to ensure that we stay within
the ramping limits when solving each step individually. The
process of updating the bounds is undertaken in two stages, as
illustrated in Figs. 3 and 4. The bounds are updated in stage
1 using the following equations as we move forward:

P t,new = min[P t, P t+1 + Prd] (12)
P t,new = max[P t, P t+1 − Pru] (13)
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The second stage bounds are updated as we move backward:

P t,final = min[P t,new, P t−1,new + Pru] (14)
P t,final = max[P t,new, P t−1,new − Prd] (15)

C. Efficient Resource Sharing between DC and AC Modules

Addressing the complex nonconvex nature of the AC model
demands a considerable amount of computational resources
compared to the MILP problem. To optimize our two-pronged
approach, we divide our time allocation as follows: One-third
of the computational resources are dedicated to solving the
DC model, while the remaining two-thirds are devoted to
tackling the challenges posed by the AC model. This balanced
allocation ensures efficient coordination between the DC and
AC modules, allowing us to solve these problems in time.

D. Sequential Optimization

Solving the problem in a single shot is impractical given
the problem scale, typically those with more than 2000 buses.
In such cases, the control horizon is subdivided into stages,
where the outcomes of one stage serve as the initial conditions
for the subsequent one. In the context of the mixed-integer
programming (MIP) problem, devices are permitted to undergo
two switching events: the first occurs at the initiation of the
control horizon. However, a crucial constraint to consider is
the minimum uptime requirement, which necessitates that the
device remains operational for a certain duration before it can
be turned off again. As a result, the second switching event
can only occur once this minimum uptime has been satisfied.

To ensure compliance with ramping limits and prevent
violations, the bounds are adjusted in a recursive manner
before executing the sequential optimization process.

V. PERFORMANCE EVALUATION

Our method was tested using over 300 scenarios meticu-
lously chosen by domain experts and research teams from
multiple organizations [4]. The code was evaluated based on
two criteria: the total score and the number of best scores
achieved. The score assessment aims to create a model that can
generate optimal solutions within specified time constraints
across various scenarios. We aimed to find a balance between
achieving high scores and meeting stringent time limitations.
The scaled scores for scenarios set 3 and scenarios set 2 are
displayed in Figs. 5 and 6. The scaled score is calculated as the
achieved score divided by the highest score recorded among
available codes. A scaled score of 1.0 indicates the highest

Fig. 3: Bound update in stage 1 to prevent ramping violations
in sequential solving.

Fig. 4: Update bounds in stage 2 to avoid ramping violations
during sequential solving.

Fig. 5: Performance of the proposed solution strategy in
scenarios set 3, evaluated against the best available solution.
The scaled score represents the ratio to the best score.

possible achievement, while a score of 0.99 signifies a 1%
deviation from the top performance.

After reviewing Fig. 5 and Fig. 6, it’s evident that the scaled
score for the majority of scenarios is higher than 0.95, with
an overall scaled score exceeding 0.98. This demonstrates the
robustness of the proposed strategy in effectively handling
various scenarios. More precisely, in scenarios set 3, the code
was tested in 137 scenarios, while in scenarios set 2, it was
tested in 196 scenarios. In scenarios set 3, the scaled score
was at least 0.99 in 42% of the scenarios, whereas in scenarios
set 2, this was the case in 53% of the scenarios. Importantly,
the scaled score exceeded 0.95 in 70% of the scenarios for
both scenarios set 3 and scenarios set 2. The overall scaled
scores for both scenarios set 3 and scenarios set 2 are 0.983
and 0.9992, respectively. A detailed distribution of these score
ranges can be found in Table II.

The dataset included diverse network models, varying in
size and complexity. These models included configurations
with 73, 617, 1576, 2000, 4224, 6049, 6708, 6717, and
8316 buses, showcasing a wide range of network scales. The
6708-bus network is the only industrial network; the rest
are synthesized. In the industrial network scenarios, totaling

TABLE II: Distribution of Scaled Scores for Set 3 and 2

Range % Scenarios
Set 3 Set 2

Scaled Score ≥ 0.99 42 53
0.99 > Scaled Score ≥ 0.97 16 10
0.97 > Scaled Score ≥ 0.95 12 9
0.95 > Scaled Score ≥ 0.93 12 9
0.93 > Scaled Score ≥ 0.90 13 11

Scaled Score < 0.9 5 8
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(a)

(b)
Fig. 6: Performance of the proposed solution strategy in (a)
scenarios set 2 and (b) zoomed-in view of scenarios set 2,
evaluated against the best available solution.

Fig. 7: Performance of the proposed strategy on 6708-bus in-
dustrial network, evaluated against the best available solution.

approximately 45 (as shown in Fig. 7), the scaled score was
nearly optimal (close to 1) in about 39 scenarios. In this
context, a scaled score close to 1 indicates the proposed model
effectively converges to the available best solution. Among the
remaining 6 scenarios, 4 exhibited scaled scores between 0.95
and 0.9, while the other 2 scenarios fell just below the 0.9
threshold. With an overall scaled score of 0.9719, our solution
further demonstrates its robust performance in addressing this
large-scale industrial real network.

VI. CONCLUSION

In conclusion, addressing the intricate challenge of optimiz-
ing the power grid requires a highly effective strategy. The
endeavor to scale multi-timestep security-constrained optimal
power flow in large power grids demands innovative solutions
due to the involvement of millions of variables and constraints,

including binary variables and nonconvex, nonlinear charac-
teristics. Our solution approach, grounded in techniques such
as constraint relaxation, linearization, sequential optimization,
and problem reformulation, has proven to be efficient in
navigating the complexities of the problem while adhering
to time constraints and maintaining optimality. The strategic
division of the problem into sequential sub-problems, namely
the DC model and the AC model, along with the careful
management of computational workload, proved essential in
enhancing the efficiency and effectiveness of our approach.
The performance evaluation highlights the robustness of our
strategy in addressing the intricate challenges inherent in
power grid optimization on a large scale.
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