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Scalable Solutions for Security-Constrained Optimal
Power Flow with Multiple Time Steps

Hussein Sharadga, Javad Mohammadi, Constance Crozier, Kyri Baker

Abstract—This work introduces an innovative approach to
scaling security-constrained optimal power flow problems to
large power grids with multi-timestep, addressing the significant
challenges associated with managing millions of continuous and
integer optimization variables as well as nonlinear and noncon-
vex constraints. Through a strategic combination of problem
reformulation, linearization methods, constraint-relaxation tech-
niques, and sequential optimization, the complexities inherent
to large power grid optimization are effectively navigated. The
proposed methodology enables the resolution of complex power
grid models with strict time constraints while attaining high-
quality solutions. Demonstrating remarkable robustness, the
novel approach consistently surpasses established benchmark
methods.

Index Terms—Power grid simulation, security-constrained op-
timal power flow, large-scale grid optimization.

I. INTRODUCTION

A. Motivation

The electrical grid remains a remarkable engineering
achievement of the 20th century [1], [2]. Yet, maintaining
effective power distribution across the grid continues to be
a significant challenge. With the increasing complexity of
modern power systems, the pursuit of robust solutions be-
comes paramount. In efforts to improve grid security, the U.S.
Department of Energy (DOE) is actively supporting initiatives
to advance grid technologies [3]. These initiatives focus on
modernizing grid operating models and tools, integrating in-
novative methodologies and technologies to address the grid’s
evolving complexities. This ensures a reliable, resilient, and
secure power grid.

The optimal power flow (OPF) model serves as the foun-
dation of electrical grid operations [4], [5], which optimizes
the setting for generators, load consumption, energy storage,
and parameters related to grid control. By integrating security
considerations and incorporating contingencies into the op-
erational framework, security-constrained optimal power flow
(SCOPF) enhances the security of the power grid [6].

Manuscript received 11-Apr-2024.
Financial support for this research is provided by the US Advanced

Research Projects Agency-Energy (ARPA-E), under grant number DE-
AR0001646.

Hussein Sharadga is with the Systems Engineering, Texas A&M Interna-
tional University, Laredo, TX, USA, and the Department of Civil, Archi-
tectural, and Environmental Engineering, The University of Texas at Austin,
Austin, TX, USA (e-mail: hssharadga@tamu.edu). Javad Mohammadi is with
the Civil, Architectural and Environmental Engineering, The University of
Texas at Austin, Austin, Texas, US (e-mail: javadm@utexas.edu). Constance
Crozier is with Industrial and Systems Engineering, Georgia Institute of Tech-
nology, Georgia, USA (e-mail: ccrozier8@gatech.edu). Kyri Baker is with
Civil, Environmental, and Architectural Engineering, University of Colorado,
Boulder, Colorado, USA (e-mail: kyri@colorado.edu).

Established methods for solving SCOPF were developed
during a period when computing power was limited and
expensive. These methods often rely on linear approxima-
tions, particularly in the form of the DC optimal power flow
(DCOPF), ignoring voltage and reactive power altogether [7].
Despite advancements, widely used optimization software and
tools are still based on the linear assumptions of the classical
DCOPF problems. Notably, commercial tools come short of
solving the comprehensive AC power flow problem [3]. To
address this, the DOE launched the Grid Optimization (GO)
challenges, aiming to solve the complete AC power flow
problem with unit commitment and security constraints [1].

B. Literature Review

Recent advancements in both computation and methodol-
ogy present an opportunity for significant improvements in
SCOPF calculations. The substantial progress in computational
capabilities and optimization solvers has spurred research
into novel methodologies for grid operation and innovative
strategies to tackle SCOPF and associated grid challenges [8].
Commercial optimization solvers like GUROBI and CPLEX
have seen a significant speed increase, exceeding three orders
of magnitude on the same hardware configurations [9]. Cloud
computing, with its capacity to harness these gains, is gar-
nering increasing attention within the power grid operation
community [10].

Concurrently with this trend and departing from conven-
tional linear assumptions, ongoing research is exploring new
techniques such as second-order cone programming (SOCP),
quadratic convex (QC), and semi-definite (SDP) methods
[11]–[15]. However, SDP relaxation often fails to produce
meaningful physical solutions to OPF problem for practical
systems [16]. Current solvers continue to face efficiency
challenges, particularly when dealing with larger systems and
mixed integer problems, as opposed to those tailored for linear
problems and second-order cone formulations. Conversely, QC
relaxation, as demonstrated in [17] and [18], offers greater
computational efficiency and ease of implementation. The
proposed QC relaxation techniques in [17] and [18] can
generate solutions that are nearly optimal when tested using
95% of the grid networks in the literature. In a recent study
[19], a new semidefinite bound tightening method is proposed
to address the remaining percentage. To further tighten state-
of-the-art relaxations, a new tight quadratic relaxation was
proposed in [20] to relax the trigonometric functions of the
OPF problems. Authors in [21] propose another high-quality
relaxation technique that is based on adaptive piecewise relax-
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ation. Furthermore, Castillo et al. [22] utilized the outer ap-
proximation method to address the nonconvexity of AC power
flow constraints. This method relaxes nonconvex problems into
linear forms. It was applied to AC unit commitment problems
and tested on the IEEE 118-bus system.

Many investigations indicate that addressing SCOPF
problems encompassing both pre-contingency and post-
contingency conditions can be enhanced by advancements
in decomposition algorithms [23] and stochastic optimization
methods [24]. The proposed methods utilize a similar dual-
stage problem-solving process [25], creating opportunities to
operate complex power grids more effectively. For instance,
the authors in [26] addressed security-constrained unit com-
mitment with AC power flow using Benders decomposition,
which separates the unit commitment (UC) problem from the
AC security constraints. The approach is demonstrated using
a six-bus system and the IEEE 118-bus system. Nogales et
al. proposes a decomposition methodology that breaks down
the optimal power flow problem into multi-areas [27]. This
methodology presents a simple procedure for computing a
suboptimal coordinated but decentralized solution for elec-
tric energy systems with 708 buses, particularly suitable for
independent system operators. A similar multi-area optimal
power flow method is introduced in [28], leveraging a mod-
ified column-and-constraint generation algorithm to manage
a 1008-bus power grid. However, further enhancements are
necessary to effectively address the complex interconnected
structures inherent in real power grid systems.

Recent research has explored an extended formulation of
the AC optimal power flow problem with security constraints
and multiple time steps, applied to 60- and 304-bus systems,
as discussed in [29], [30]. Recent studies also focuses on
tackling the GO challenges. The authors in [31] demonstrated
that a straightforward algorithm designed solely to satisfy unit
commitment, reserve, and AC power balance constraints can
achieve high-quality solutions for the AC unit commitment
problems within the GO challenges. Chevalier developed a
parallelized Adam-based numerical solver to tackle these chal-
lenges in [32]. This solver parallelizes backpropagation and
variable projection processes, leveraging parallel computing
hardware to solve large-scale problems quickly and is designed
to be hyper-scalable.

C. Contributions

This paper introduces our innovative decomposition strat-
egy combined with a hybrid solver approach to address the
challenges associated with multi-timestep security-constrained
optimal power flow problems in large-scale power grids, which
are part of the Grid Optimization (GO) challenges, a US
Department of Energy (DOE) initiative [33]. Our contributions
include the development of a unique two-stage strategy to
deliver a rapid, and robust solution for the entire AC opti-
mal power flow problems, while simultaneously solving for
both real and reactive power, as well as device switching.
This approach does not utilize any of the aforementioned
ACOPF relaxations, as it solves the complete AC problem
directly, adhering to the strict tolerance of 10−8 for constraint

violations. The proposed approach incorporates an innovative
decomposition technique, which partitions the problem into
two modules (the DC module and the AC module), which are
solved sequentially. Through the utilization of solvers tailored
to each stage and the integration of reformulation techniques,
significant improvements in efficiency are achieved in our
solution process.

The DC module, which is linear and involves integer
variables, is solved by Gurobi, while the AC module, which
is nonconvex but involves only continuous variables, is solved
by IPOPT. This hybrid method leverages the complementary
strengths of fast DC linear approximation (solved by Gurobi)
and a detailed, comprehensive AC formulation (solved by
IPOPT), resulting in improved performance compared to ex-
isting methods.

In a nutshell, our novelty lies in strategic decomposition, the
tailored application of solvers, and the innovative reformula-
tion techniques that facilitate solver use, leading to significant
advancements in handling complex power flow problems.

II. THE SCOPF PROBLEM

A. Problem Formulation

The problem formulation utilized in this article is sourced
from the GO challenge, which is an initiative by the Ad-
vanced Research Projects Agency-Energy (ARPA-E). This
formulation, which is notably comprehensive, consists of a
primary formulation spanning 53 pages [33], supplemented by
22 pages of additional information. It encompasses a diverse
array of optimization variables and constraints, such as voltage
constraints at bus nodes, limits on real and reactive power,
zone-specific reserves, and considerations related to device
operation and reliability. This involves device statuses, intri-
cate switching considerations, factors governing device uptime
and downtime, counts of device starts over multiple time
intervals, specifications on maximum and minimum energy
generation/consumption over specific multiple time intervals,
and constraints on ramping down and up, among others (as
illustrated in Figure 1 in [1]). Importantly, it should be noted
that these constraints apply to both base and contingency
states. The incorporation of contingency constraints ensures
the grid’s security in mitigating outages and unforeseen events.
The OPF problem is succinctly outlined as:

max
pjt,θit

z (pjt, θit, ujt, . . .)

s.t. G(pjt, θit, ujt, . . .)=0, H(pjt, θit, ujt, . . .)≤0
(1)

The problem formulation aims to maximize the total market
surplus, represented by z. Here, pjt is the power of device
with index j at time step t, θit represents the voltage angle
of the bus with index i, and the binary variable ujt represents
the device switching status. The set of equality constraints is
denoted by G, while the set of inequality constraints is denoted
by H .

B. Problem Complexity, Data, and Testing Platform

The problem dataset consists of 9 network models, including
configurations with 73, 617, 1576, 2000, 4224, 6049, 6708,
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6717, and 8316 buses. The 6708-bus network is the only
real-world network; the others are synthetic. The dataset is
available at [34]. The 73-bus network is relatively simple,
involving 72 thousand continuous variables and 11 thousand
binary variables. In contrast, the 8316-bus network represents
a highly complex test case, requiring the optimization of over
9 million continuous variables and more than 2 million binary
variables.

To develop our solution strategy, we utilized the testing plat-
form developed by the Pacific Northwest National Laboratory
(PNNL), which takes in GitHub repositories and then executes
the code repository on a computing node made available
by PNNL. The computing node is equipped with dual 32-
core CPUs and local memory. The testing platform calculates
the cost function for the returned solution, verifies solution
feasibility, and sets the time limit. It is worth noting that our
code repository is written in Python.

The testing criteria for the power grid scheduling code
are divided into three categories, each with its own set of
requirements. Table I outlines the scheduling requirements for
the power grid in each category.

TABLE I: Power Grid Scheduling Categories and Testing
Criteria Developed by ARPA-E

Category Time Horizon Time Limit
C1 8 hours ahead 10 mins
C2 48 hours ahead 2 hours
C3 7-day (168 hours) ahead 3 hours

The problem datasets are divided into Scenario Sets to
ensure the code handles diverse scenarios and prevents it from
memorizing the testing instances [34]. Scenario Set 3, which
corresponds to the E3 set, builds on Scenario Set 2 (E2 set)
but includes more diversity in the testing cases.

For scenario indexing in Scenario Sets 3 and 2, the sce-
narios within each set are indexed based on network size and
category. We start with the smallest network and then iterate
through each category. Within each category, the scenario with
the smallest number is indexed first.

III. THE PROPOSED SOLVING STRATEGY

To manage the complexity of a large-scale SCOPF problem
and to expedite the solution procedure, we decompose the
SCOPF problem into two modules—the DC and AC com-
ponents—which are solved sequentially. In the first modules,
we apply the DC assumptions, where optimization variables
consist of both binary and continuous types. Following the res-
olution of the first subproblem, the binary variables obtained
are held constant, while disregarding the continuous variables.

In the AC module, all constraints are incorporated, accu-
rately simulating a realistic grid. Conversely, we opt not to
include all constraints in the DC module in order to reduce
solving time for the first module. Nonetheless, essential con-
straints for the AC module feasibility, such as device ramping
constraints, are included in the DC module. Omitting these
constraints in the DC module could lead to sudden device
shutdowns. As a result, the AC module, which considers

ramping constraints, may deem the decision to shut down as
violating the ramp down limit and therefore infeasible.

The DC module is transformed into a mixed-integer linear
problem (MILP), which is then addressed by the Gurobi solver
(version 10.0.2). The AC module, however, presents non-
convex and nonlinear (NLP) problems, which are effectively
addressed by the IPOPT solver (version 3.12.13).

By decomposing the problem into two modules and then
employing specialized solvers for each module, we improve
computational efficiency. Figure 1 depicts the two-stage solu-
tion approach we propose. In the following sections, novelties
introduced for solving each module are discussed.

A. Handling Computations Workload within the DC Module

To efficiently manage the computations workload within
the DC module, we employ a variety of methods to enhance
computation efficiency and reduce problem complexity.

a) Relaxation of Nonconvex Constraints: This entails
utilizing the substitution method and relaxing the equality
constraint. More precisely, shunt power (shunt is indicated by
‘sh’) is expressed as [33]:

pjt = gshjt v
2
it ∀j ∈ jshi (2)

The energy-balance constraint is expressed as [33]:∑
j∈jcs,pri

pjt +
∑
j∈jshi

pjt +
∑
j∈jfr

i

pfrjt +
∑
j∈jtoi

ptojt = pit (3)

Equation (2) is non-linear and non-convex. To address this,
we first substitute (2) into (3):

∑
j∈jcs,pri

pjt +
∑
j∈jshi

gshjt v
2
it +

∑
j∈jfr

i

pfrjt +
∑
j∈jtoi

ptojt = pit (4)

This new constraint, however, is nonconvex. To transform
it into a convex, we relax the equality constraint into an
inequality constraint:

∑
j∈jcs,pri

pjt +
∑
j∈jshi

gshjt v
2
it +

∑
j∈jfr

i

pfrjt +
∑
j∈jtoi

ptojt ≤ pit (5)

In (5), the right side is the power mismatch, denoted as pit,
and given the substantial mismatch penalty, the solver works
on minimizing it. When pit matches the counterpart of (5),
minimization occurs.

b) Linearizing Convex Constraints: First, we reformulate
the convex constraints into quadratic forms. Second, we utilize
McCormick envelope relaxation to transform these quadratic
terms into linear. McCormick envelope relaxation is explained
in [13]. These two steps together significantly reduce computa-
tion time, with potential savings of up to 75% for small power
grids and yielding even higher efficiency gains for larger power
grids. In particular, the branch flow-limit constraint takes the
following second-order cone problem (SOCP) format:

||pfrjt + qfrjt ||2 ≤ smax
j + s+jt ∀t ∈ T, j ∈ jac (6)

In (6), the right side is linear, while the left side represents
the norm function, known for its convexity. Therefore, (6) is
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Fig. 1: Our two-stage solution strategy includes DC and AC modules.

considered convex. To transform (6) into a quadratic form, we
square both sides as follows:

(pfrjt )
2 + (qfrjt )

2 ≤ (smax
j )2 + 2 smax

j s+jt + (s+jt)
2

∀t ∈ T, j ∈ jac
(7)

The constraint in (7) is nonconvex. However, McCormick
envelope relaxation linearizes the quadratic terms.

c) MILP Problem with Sparse Constraint Matrix and
Slack Variables: Inherent feasibility characterizes the MILP
as formulated; however, the incorporation of slack variables
enhances the solver’s convergence speed. These are present in
a limited number constraints, leading to a more sparsely pop-
ulated constraint matrix with increased zero entries. This spar-
sity promotes faster convergence for the solver. For instance,
the problem can be solved by setting the power mismatch and
branch flow limits violation to zero and removing them from
the problem formulation. However, it has been observed that
leaving them as variables helps the solver converge faster.

d) Reduction of Lengthy Linear Expressions: Numerous
devices are connected to the same bus, leading to a long power-
balance constraint expressed as a lengthy linear equation.
To address this issue, additional variables are introduced.
Although this expands the pool of optimization variables, it
enhances the convergence speed. For instance, (3) is updated
as follows:

P cs,pr
jt + P sh

jt + P fr
jt + P to

jt = pit (8)

where:
P cs,pr
jt =

∑
j∈jcs,pri

pjt

P sh
jt =

∑
j∈jshi

pjt

P fr
jt =

∑
j∈jfr

i

pfrjt

P to
jt =

∑
j∈jtoi

ptojt

(9)

The introduction of these new variables results in a more
concise representation of the power balance constraint (3),
thereby improving computational efficiency and speeding up
convergence.

e) Reformulation of Downtime-Dependent Device
Startup Costs: We structured these costs using clique
constraints. Our selection criteria were not based solely on
minimizing the number of variables and constraints, but
rather on the alignment with Gurobi’s workflow. In particular,
we chose the clique constraints because of its compatibility
with Gurobi’s pre-solver, which leverages the structure of the
optimization problem to eliminate variables and constraints.

The process of determining downtime-dependent startup
costs is analogous to finding the first occurrence of an item
in a vector [33]. Assuming the vector x represents binary
variables indicating shutdown status, we introduce another
binary variable B. B will be 1 the first time the value 1
appears in x and 0 otherwise. B can be formulated using clique
constraints:

Bt ≤ xt ∀t

Bt ≥ xt −
∑
τ<t

xτ ∀t

Bt ≤ 1−
∑
τ<t

Bτ ∀t
(10)

f) Max/Min Constraint Functions Reformulation: There
are two approaches to formulating maximum/minimum equal-
ity constraints for compatibility with the Gurobi solver. The
first method involves linearizing these constraints, as we will
demonstrate. Alternatively, the constraints can be formulated
into MIP problem. In this investigation, we found that the
MIP formulation facilitates faster convergence for the Gurobi
solver, as it aligns more effectively with Gurobi’s solution
workflow.

For instance, consider the synchronized reserve requirement
for reserve zone n as given below:

P scr,req
nt = σscr

n max
j∈jprn

pjt (11)

This constraint is nonconvex; the nonlinear equality constraint
is nonconvex. Gurobi’s solver replaces the max equality con-
straint with an equivalent MIP formulation. Another proposed
method is a linear version of the model as shown below. The
reserve balance constraint is stated as follows:∑

j∈jpr,csn

(prgujt + pscrjt ) + pscr, +
nt ≥ prgu, req

nt + pscr, req
nt (12)
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By substituting (11) into (12), (11) is eliminated from the
problem formulation:∑
j∈jpr,csn

(prgujt + pscrjt ) + pscr, +
nt ≥ prgu, req

nt + σscr
n max

j∈jprn

pjt (13)

A linearized version is shown below:∑
j∈jpr,csn

(prgujt + pscrjt ) + pscr, +
nt ≥ prgu, req

nt + σscr
n pjt ∀j ∈ jprn

(14)
However, the solver converges faster if the max equality
constraint is formulated as an MIP problem using Gurobi.
There are two ways to reformulate the max function into a
MIP problem: one method is based on using the big M-value;
however, Gurobi utilizes the SOS condition to eliminate the
need for introducing the big M-value [35].

B. Handling Computations Workload within the AC Module

In this section, we discuss how we manage the computa-
tional workload of the AC module by implementing various
techniques. Importantly, the complete AC model is addressed
without resorting to relaxation or linearization, ensuring a
thorough and precise portrayal of the power grid. Below, we
provide detailed insights into these techniques:

a) Managing Uncontrollable Loads: We thoroughly ex-
amined the devices to identify the uncontrollable variables.
Then, these variables are eliminated to reduce the problem
size. Specifically, the device power is partitioned into bid
blocks (m ∈ M), with each block assigned a corresponding
cost. As a result, The device total power is determined by
adding up the power values for every block:

pjt =
∑

m∈Mjt

pjtm ∀j ∈ jcs,pri (15)

Consider an example of a consumption device with the fol-
lowing bid blocks:

Bid Blocks =


10, 000 0.1
5, 000 0.2
1, 000 0.3
500 0.4

 (16)

The left column represents the cost of purchase, and the right
column represents the maximum power of each bid block. Our
goal is to maximize the objective function, so we begin by
processing the bid blocks, restoring the block with the highest
purchase value on top.

In this context, if the device’s lower power bound exceeds
the maximum power that can be allocated to the first block
(m = 1) in the bid blocks, the power allocation within this
block becomes uncontrollable. Consequently, the power for
the first block is set to its upper limit. For this device, the
lower bound is given to be 0.15, and the upper bound is 0.5.
Since the lower bound is 0.15 and the maximum power that
can be allocated to the first block is 0.1, pjtm for the first
block (m = 1) is 0.1. Consequently, no optimization variable
is introduced for the first bid block. This indicates that the
power in the first bid block is uncontrollable. To respect the
device power bounds, we set the minimum power in the second

bid to 0.05, the maximum power in the third bid to 0.2, and
the power in the last bid to zero. Therefore, no optimization
variable is introduced for the last bid block. This approach
allows us to reduce the number of optimization variables
needed specifically to represent this device’s bid blocks by
50%.

b) Optimization of Power Reserves- Post-Simulation:
Initially, reserves are excluded from the primary optimization
process. Instead, following IPOPT’s simulation completion,
power values are adjusted to meet reserve requirements. This
approach significantly reduces the complexity of the problem.
To determine the reserve requirements for each zone, an offline
calculation was performed. Then the available reserves were
deployed from least to highest cost until either the require-
ments were met or the reserve product run out. In the GO
challenges there were several swaps that could be made, for
example replacing spinning reserves for non-spinning reserves.
Therefore, the reserve products were allocated from lowest to
highest quality (as the lowest quality products could not be
used for another service). In the vast majority of cases, this
was sufficient to meet all reserve requirements. However, it
should be noted that the success of this strategy relies on an
abundance of reserve products being available.

c) Analytical Derivatives Computation: The derivatives
of the Hessian and Jacobian matrices are calculated analyti-
cally. Utilizing these analytical derivatives accelerates IPOPT’s
convergence compared to relying on automatic differentiation.
However, generating these analytical-based matrices requires
more manual code development.

d) Structural Representation of Jacobian & Hessian Ma-
trices: When providing the analytical Hessian and Jacobian
matrices, we only include data about non-zero elements and
its corresponding coordinates, outlined by the matrix structure.
This method avoids the necessity of specifying details for zero
elements, thereby minimizing both the computations workload
and data storage requirements. Consequently, it expedites the
convergence.

e) Utilizing Vectorized Form: This approach reduces the
amount of information that needs to be stored, speeds up
data access, and eliminates the need for if statements and
loops, thereby improving computation speed. This optimiza-
tion becomes especially crucial when dealing with complex
and large equations, where efficient data handling is paramount
for performance. As an illustrative example, consider the
derivative of power in the AC branch originating from bus
i with respect to voltage [33]:

dpfrjt
dv

= −2uon
jt (g

sr
j + gfrj )

vit
τ2jt

∀j (17)

The above equation is part of the following equation:∑
j∈jcs,pri

dpjt
dv

+
∑
j∈jshi

dpjt
dv

+
∑
j∈jfr

i

dpfrjt
dv

+
∑
j∈jtoi

dptojt
dv

=
dpit
dv

(18)
Equation (17) applies to every branch j. The subscript i refers
to the bus to which the branch is connected. To iterate over
branches and reduce the number of information calls, we
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introduce a matrix-vector storing the branches originating from
the buses, which we refer to as the “bus-branch” matrix. Rows
represent different buses, and each column corresponds to a
branch index. The element in row r and column c is set to one
if the bus with index r is connected to the branch with index
c and power is originating from bus r, otherwise, it is set to
zero. A similar matrix is concatenated for each time step t in
the control horizon. (17) is updated as follows:

dpfrjt
dv

= −2× bus-branch · (uon
jt (g

sr
j + gfrj )× 1

τ2jt
)× vit (19)

This streamlined approach not only enhances computational
efficiency but also simplifies code readability, facilitating
maintenance and future development. By leveraging vectorized
form, we optimize performance while maintaining code clarity
and conciseness.

f) Managing Ramping Bounds in Sequential Optimiza-
tion: This technique allows problem-solving through sequen-
tial optimization, particularly for networks with a signifi-
cant scale, typically exceeding 2000 buses. Recognizing the
impracticality of tackling such large networks within the
allocated time windows as a whole, we adopt a sequential
approach. By breaking down the problem into manageable
steps, we can effectively address it. To maintain adherence to
ramping limits, we recursively update the bounds for each step.
Figs. 2 and 3 illustrate this updating process, which involves
dual steps.

The bounds are adjusted in stage 1 as we progress forward,
employing the following equations:

P t,new = min[P t, P t+1 + Prd] (20)
P t,new = max[P t, P t+1 − Pru] (21)

The bounds undergo a second stage of adjustment, moving
backward:

P t,final = min[P t,new, P t−1,new + Pru] (22)
P t,final = max[P t,new, P t−1,new − Prd] (23)

g) Selective Inclusion of Contingency Constraints: Due
to the problem’s size and constraints imposed by computa-
tional limits, we prioritized the inclusion of only the contin-
gency constraints related to the energy-balance equation. This
decision was made because there is a high penalty on power
mismatch, denoted as pit in (3). These contingency constraints
are formulated explicitly within the AC module.

Fig. 2: Adjusting the bounds in step 1 to maintain compliance
with the ramping limit while solving the problem sequentially.

Fig. 3: Adjusting the bounds in step 2 to maintain compliance
with the ramping limit while solving the problem sequentially.

C. Optimal Allocation of Computing Resources

Compared to the process of solving the DC module, solving
the nonconvex AC module requires substantial computational
time. To refine the proposed two-stage strategy, we allocate
third of the computation time to solve the DC module,
followed sequentially by two-thirds dedicated to addressing
the complexities of the AC module. This allocation maintains
effective coordination between the DC and AC modules,
enabling timely problem resolution.

D. Sequential Optimization

For systems with over 2000 buses, the scale of the problem
prohibits its resolution as a whole. Similar to smaller networks,
the problem is first decomposed into DC/AC subproblems. The
DC subproblem is solved first, followed by the AC subprob-
lem. However, in these large networks, the AC subproblem
is divided into stages; the control horizon of the AC module
is divided into stages, with each stage’s output serving as the
starting state for the next stage.

In the DC module for these large networks, the devices are
allowed two switching events: the initial one at the start of
the control horizon, and the second after the minimum uptime
constraint has been met. The minimum uptime constraint
ensures that that devices remain operational for a set duration
before they are switched off. By limiting the number of
switching events to two, we reduce the number of binary
variables needed to represent the device status.

To prevent ramping limits violations, the bounds are re-
cursively updated before initiating the sequential optimization
process.

IV. PERFORMANCE EVALUATION

The solving strategy we proposed was tested with over 300
scenarios, which were meticulously chosen by domain experts
and research teams from multiple organizations [3]. The score
assessment aims to create a model that can generate high-
quality solutions within specified time constraints across vari-
ous scenarios. We aimed to find a balance between achieving
high scores and meeting stringent time limitations.

To achieve this, we introduce the scaled score metric,
representing the ratio between the objective function generated
by our code and the best objective function achieved by other
available codes. Scaled scores are calculated for Scenario Set
3 and Scenario Set 2, as shown in Figures 4 and 5. A scaled
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score of 1 represents the best-known solution, whereas a score
of 0.99 indicates a deviation of 1% from the highest achieved
score.

A. Score Comparison

Upon examination of Figs. 4 and 5, it becomes apparent that
the scaled score for most scenarios exceeds 0.95. Furthermore,
the average scaled score exceeds 0.98, which highlights the
resilience of our strategy in adeptly managing a wide range of
scenarios.

More precisely, our code was evaluated using Scenario Set
3 and Scenario Set 2, which includes 137 scenarios and 197
scenarios, respectively. In Scenario Set 3, the scaled score
was 0.99 or higher in 42% of scenarios, compared to 53%
in Scenario Set 2. Additionally, the scaled score was 0.95
or higher in 70% of scenarios for both Scenario Set 3 and
Scenario Set 2. The average scaled score across all scenarios
in Scenario Set 3 is 0.983, and for Scenario Set 2, it is 0.9992.
Table II provides the distribution of these scores.

The dataset encompassed a variety of network models,
spanning different sizes and levels of sophistication. It com-
prised configurations with 73, 617, 1576, 2000, 4224, 6049,
6708, 6717, and 8316 buses, representing a broad spectrum
of network scales. Notably, the network with 6708 buses
stands as the sole real-world network, while the remainder are
simulated. Across 45 scenarios within the industrial network
(as depicted in Fig. 6), the scaled score approached near
optimality (close to 1) in approximately 39 scenarios. In this
context, a scaled score close to 1 indicates the proposed model
effectively converges to the available best solution. Out of
the the six remaining scenarios, four achieved scaled scores
ranging from 0.90 to 0.95, while the remaining two scenarios
had scaled scores slightly below 0.9. With an average scaled
score of 0.9719, our solution further demonstrates its robust
performance in addressing large-scale industrial networks.

B. Performance Across Network Sizes

The distribution of scaled scores across different network
sizes in Scenario Set 3 is depicted in Fig. 7. Networks with 73

Fig. 4: Proposed approach performance in Scenario Set 3
across various network sizes and scenarios. Scaled score: Our
code’s score / top score achieved.

(a)

(b)

Fig. 5: Proposed approach performance (a) scenarios set 2, (b)
a magnified view of scenarios set 2, compared with top score.

Fig. 6: Proposed approach performance in 6708-bus industrial
grid, compared to the top score.

and 1576 buses exhibit wider distributions, indicating greater
variability in the scores. Conversely, the distributions for the

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2025.3532927

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 25,2025 at 07:13:48 UTC from IEEE Xplore.  Restrictions apply. 



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. 8

Fig. 7: Exploring scaled score distributions across different network sizes using violin plots for Scenario Set 3: insights into
the proposed tool performance and scalability.

remaining networks tend to be narrower and more concentrated
around the median, suggesting a more consistent performance.

Fig. 8 illustrates the distribution of scaled scores across
different network sizes in Scenario Set 2. Notably, the tool
consistently produces scaled scores with an average value
of 1, indicating its robustness across various scenarios and
network sizes. Additionally, for certain scenarios, the tool
yields relatively high scores that significantly exceed the best
available solution, as evidenced by the elongation of the violin
plot. This suggests the tool’s capability to achieve exceptional
performance under specific conditions, offering valuable in-
sights into its effectiveness and potential for optimizing the
power grid.

C. Time Analysis Across Network Sizes

The time for the solver completing the task within three
categories (C1, C2, and C3) for different network sizes is
visually depicted in Fig. 9. Notably, the network with 1576
buses requires the highest time across all categories. It is worth
mentioning that networks with more than 2000 buses consume
relatively less time compared to smaller networks. This can be
attributed to breaking the control horizon for these networks
into steps and solving them using sequential optimization,

TABLE II: Scaled Score Distribution for Scenario Sets 3 & 2
[1]

Range % Scenarios
Set 3 Set 2

Scaled Score ≥ 0.99 42 53
0.99 > Scaled Score ≥ 0.97 16 10
0.97 > Scaled Score ≥ 0.95 12 9
0.95 > Scaled Score ≥ 0.93 12 9
0.93 > Scaled Score ≥ 0.90 13 11
Scaled Score < 0.9 5 8

reducing the complexity of the problem and thus computation
time. Although we still need to solve for every stage, it is
faster than solving the problem as a whole.

These insights provide valuable guidance into the relation-
ship between the network size and performance metrics, aiding
in the optimization of resource allocation and operational
efficiency within the transmission system.

D. Algorithm Design Insights

The computation speed-up resulting from deploying differ-
ent techniques to solve our optimization problem for category
C1 on the 73-bus system is presented in Table III. For this
analysis, we used a personal machine (a Lenovo X1 Carbon
laptop with an Intel(R) Core(TM) i7-8665U CPU @ 1.90
GHz, 2.11 GHz and 16.00 GB RAM). In this context, the
speed-up is defined as the ratio of the computation time of the
original formulation to the computation time of the proposed
formulation. The problem formulation for the 73-bus network
involves 72 thousand continuous variables, 11 thousand bi-
nary variables, and 94 thousand constraints. The proposed
techniques significantly reduce the required computation time
in the C1 category. Moreover, the speed-up is even more
significant in categories C2 and C3, given the problem size.
The speed-up is also more substantial for larger networks.

While the proposed model proves to be fast and robust
across a wide range of scenarios and network sizes, the quality
of the solutions varies across different scenarios. This incon-
sistency may stem from differences in non-linearity levels and
the length of the control horizon. In our future work, we will
explore mitigation strategies to enhance the reliability of our
proposed solution.

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2025.3532927

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 25,2025 at 07:13:48 UTC from IEEE Xplore.  Restrictions apply. 



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. 9

Fig. 8: Exploring scaled score distributions across different network sizes using violin plots for Scenario Set 2: insights into
the proposed tool performance and scalability.

Fig. 9: Comparison of computation time across varying network sizes and testing categories: the tool demonstrates robustness
in adhering to time constraints. The computation time displayed in the heatmap represents the maximum computation time
recorded across different scenarios for each network and within a given category.

TABLE III: Speed-Up Achieved by Employing Different Tech-
niques. We considered the C1 Category on the 73-bus system.
The speed-up is defined as the solution time of the original
formulation divided by the run time of the revised problem.

Employed Techniques Speed-Up
Nonconvex Constraints Relaxation 12.25x
Convex Constraints Linearization 4.12x
Slack Variables 1.75x
Reduction of Lengthy Linear Expressions 3.75x
Downtime-Dependent Startup Costs Reformulation 1.78x
Max/Min Constraint Reformulation 1.95x
Managing Uncontrollable Loads 4.32x
Analytical Derivatives 9.89x

V. CONCLUSION

In conclusion, our study focuses on the development of
a highly effective approach for tackling the complexities of

power grid optimization. Scaling security-constrained opti-
mal power flow in large power grids with multi-timestep
presents significant challenges, primarily attributable to the
inclusion of millions of variables and constraints, involving
integer variables and intricate, nonconvex characteristics. Our
proposed strategy, which integrates innovative methodolo-
gies such as problem reformulation, linearization methods,
constraint-relaxation techniques, and sequential optimization,
has emerged as a robust solution for managing these complex-
ities within strict time limitations, and providing high-quality
solutions.

By strategically dividing the problem into two modules,
namely the DC module and the AC module, and carefully
managing computational workload, we have significantly en-
hanced the proposed strategy’s efficiency. The thorough perfor-
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mance evaluation conducted validates the proposed strategy’s
resilience in managing the challenges intrinsic in optimizing
large-scale power grids. Importantly, our approach has demon-
strated its capability to handle diverse power grid sizes, affirm-
ing its versatility and suitability for real-world applications.

ACKNOWLEDGMENTS

During the preparation of this work, the authors used Chat-
GPT to enhance readability. Subsequently, they thoroughly
reviewed and edited the content as necessary, taking full
responsibility for the publication’s content.

REFERENCES

[1] H. Sharadga, J. Mohammadi, C. Crozier, and K. Baker, “Optimizing
Multi-Timestep Security-Constrained Optimal Power Flow for Large
Power Grids,” 2024 IEEE Texas Power Energy Conf., 2024, doi:
10.1109/TPEC60005.2024.10472229.

[2] G. B. Giannakis, V. Kekatos, N. Gatsis, S. J. Kim, H. Zhu, and B.
F. Wollenberg, “Monitoring and optimization for power grids: a signal
processing perspective,” IEEE Signal Process. Mag., vol. 30, no. 5, pp.
107–128, 2013, doi: 10.1109/MSP.2013.2245726.

[3] ARPA-E, “Grid optimization challenge 3,” https://gocompetition.energy
.gov/; last accessed March 12, 2024.

[4] M. Gao, J. Yu, Z. Yang, and J. Zhao, “A Physics-Guided Graph Convolu-
tion Neural Network for Optimal Power Flow,” IEEE Trans. Power Syst.,
vol. 39, no. 1, pp. 380–390, 2024, doi: 10.1109/TPWRS.2023.3238377.

[5] J. Mohammadi, G. Hug, and S. Kar, “Agent-based distributed security
constrained optimal power flow,” IEEE Trans. Smart Grid, vol. 9, no. 2,
pp. 1118–1130, 2018, doi: 10.1109/TSG.2016.2577684.

[6] F. Capitanescu et al., “State-of-the-art, challenges, and future trends in
security constrained optimal power flow,” Electr. Power Syst. Res., vol.
81, no. 8, pp. 1731–1741, 2011, doi: 10.1016/j.epsr.2011.04.003.

[7] J. K. Skolfield and A. R. Escobedo, “Operations research in optimal
power flow: A guide to recent and emerging methodologies and appli-
cations,” Eur. J. Oper. Res., vol. 300, no. 2, pp. 387–404, 2022, doi:
10.1016/j.ejor.2021.10.003.

[8] P. Panciatici et al., “Advanced optimization methods for power systems,”
Proc. - 2014 Power Syst. Comput. Conf. PSCC 2014, pp. 1–18, 2014,
doi: 10.1109/PSCC.2014.7038504.

[9] T. Koch et al., “MIPLIB 2010: Mixed integer programming library
version 5,” Math. Program. Comput., vol. 3, no. 2, pp. 103–163, 2011,
doi: 10.1007/s12532-011-0025-9.

[10] M. Yigit, V. C. Gungor, and S. Baktir, “Cloud Computing for Smart
Grid applications,” Comput. Networks, vol. 70, pp. 312–329, 2014, doi:
10.1016/j.comnet.2014.06.007.

[11] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107, 2012,
doi: 10.1109/TPWRS.2011.2160974.

[12] S. H. Low, “Convex relaxation of optimal power flow - Part i: Formu-
lations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1,
pp. 15–27, 2014, doi: 10.1109/TCNS.2014.2309732.

[13] A. Miro´ et al., “Deterministic global optimization algorithm based on
outer approximation for the parameter estimation of nonlinear dynamic
biological systems,” BMC Bioinformatics, vol. 13, no. 90, 2012. doi:
10.1186/1471-2105-13-90.

[14] R. Madani, S. Sojoudi, and J. Lavaei, “Convex relaxation for optimal
power flow problem: Mesh networks,” IEEE Trans. Power Syst., vol. 30,
no. 1, pp. 199–211, 2015, doi: 10.1109/TPWRS.2014.2322051.

[15] D. K. Molzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco,
“Implementation of a large-scale optimal power flow solver based on
semidefinite programming,” IEEE Trans. Power Syst., vol. 28, no. 4, pp.
3987–3998, 2013, doi: 10.1109/TPWRS.2013.2258044.

[16] B. C. Lesieutre, D. K. Molzahn, A. R. Borden, and C. L. DeMarco,
“Examining the limits of the application of semidefinite programming
to power flow problems,” 2011 49th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 1492–1499,
2011, doi: 10.1109/Allerton.2011.6120344.

[17] C. Coffrin, H. L. Hijazi, and P. Van Hentenryck, “The QC Relaxation:
A Theoretical and Computational Study on Optimal Power Flow,” IEEE
Trans. Power Syst., vol. 31, no. 4, pp. 3008–3018, 2016, doi: 10.1109/TP-
WRS.2015.2463111.

[18] H. Hijazi, C. Coffrin, and P. Van Hentenryck, “Convex quadratic re-
laxations for mixed-integer nonlinear programs in power systems,” Math.
Program. Comput., vol. 9, no. 3, pp. 321–367, 2017, doi: 10.1007/s12532-
016-0112-z.

[19] S. Gopinath et al., “Proving global optimality of ACOPF solutions,”
Electr. Power Syst. Res., vol. 189, p. 10668, 2020.

[20] K. Bestuzheva, H. Hijazi, & C. Coffrin, “Convex relaxations for
quadratic on/off constraints and applications to optimal transmission
switching,” INFORMS J. Comput., vol. 32, no. 3, pp. 682–696, 2020,
doi: 10.1287/ijoc.2019.0900.

[21] M. Lu, H. Nagarajan, R. Bent, S. D. Eksioglu, and S. J. Mason, “Tight
piecewise convex relaxations for global optimization of optimal power
flow,” IEEE Power Syst. Comput. Conf. PSCC 2018, pp. 1–7, 2018, doi:
10.23919/PSCC.2018.8442456.

[22] A. Castillo, C. Laird, C. A. Silva-Monroy, J.-P. Watson, and R. P.
O’Neill, “The Unit Commitment Problem With AC Optimal Power Flow
Constraints,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4853–4866,
Nov. 2016, doi: 10.1109/TPWRS.2015.2511010.

[23] H. T. Kahraman, M. Akbel, & S. Duman, “Optimization of Opti-
mal Power Flow Problem Using Multi-Objective Manta Ray Forag-
ing Optimizer,” Appl. Soft Comput., vol. 116, p. 108334, 2022, doi:
10.1016/j.asoc.2021.108334.

[24] D. Liu, C. Zhang, G. Chen, Y. Xu, & Z. Y. Dong, “Stochastic security-
constrained optimal power flow for a microgrid considering tie-line
switching,” Int. J. Electr. Power Energy Syst., vol. 134, p. 107357, 2021,
doi: 10.1016/j.ijepes.2021.107357.

[25] D. E. Olivares, C. A. Canizares, & M. Kazerani, “A centralized energy
management system for isolated microgrids,” IEEE Trans. Smart Grid,
vol. 5, no. 4, pp. 1864–1875, 2014, doi: 10.1109/TSG.2013.2294187.

[26] Y. Fu, M. Shahidehpour, and Z. Li, “Security-Constrained Unit Com-
mitment With AC Constraints,” IEEE Trans. Power Syst., vol. 20, no. 2,
pp. 1001–1013, 2005, doi: 10.1109/TPWRS.2005.846076.

[27] F. J. Nogales, F. J. Prieto, & A. J. Conejo, “A Decomposition Method-
ology Applied to the Multi-Area Optimal Power Flow Problem,” Ann.
Oper. Res., vol. 120, pp. 99–116, 2003, doi: 10.1023/A:1023374312364.

[28] W. Huang, W. Zheng, & D. J. Hill, “Distributionally Robust Optimal
Power Flow in Multi-Microgrids with Decomposition and Guaranteed
Convergence,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 43–55, 2021,
doi: 10.1109/TSG.2020.3012025.

[29] M. I. Alizadeh and F. Capitanescu, “A tractable linearization-based ap-
proximated solution methodology to stochastic multi-period AC security-
constrained optimal power flow,” IEEE Trans. Power Syst., vol. 38, no.
6, pp. 5896-5908, doi: 10.1109/TPWRS.2022.3220283.

[30] M. I. Alizadeh, M. Usman, and F. Capitanescu, “Envisioning security
control in renewable dominated power systems through stochastic multi-
period AC security constrained optimal power flow,” Int. J. Electr. Power
Energy Syst., vol. 139, no. 107992, doi: 10.1016/j.ijepes.2022.107992.

[31] R. Parker and C. Coffrin, “Managing Power Balance and Reserve
Feasibility in the AC Unit Commitment Problem,” Electric Power Syst.
Res., vol. 234, no. 110670, 2024, doi:10.1016/j.epsr.2024.110670.

[32] S. Chevalier, “A Parallelized, Adam-Based Solver for Reserve and
Security Constrained AC Unit Commitment,” Electric Power Syst. Res.,
vol. 235, no. 110685, 2024, doi: 10.1016/j.epsr.2024.110685.

[33] J. Holzer et al., “Grid optimization challenge 3 problem formulation,”
https://gocompetition.energy.gov/challenges/challenge-3/formulation;
last accessed March 12, 2024.

[34] ARPA-E, “Grid optimization challenge 3 datasets,” https://gocompetitio
n.energy.gov/challenges/600650/datasets; last accessed July 28, 2024.

[35] Gurobi Optimization. Documentation. General Constraint Functions,
2024. Available online: https://www.gurobi.com/documentation/9.0/r
efman/constraints.html#subsubsection:GenConstrFunction; last accessed
March 14, 2024.

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2025.3532927

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 25,2025 at 07:13:48 UTC from IEEE Xplore.  Restrictions apply. 


